論文の概要: LighTDiff: Surgical Endoscopic Image Low-Light Enhancement with T-Diffusion
- arxiv url: http://arxiv.org/abs/2405.10550v1
- Date: Fri, 17 May 2024 05:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 16:52:18.096403
- Title: LighTDiff: Surgical Endoscopic Image Low-Light Enhancement with T-Diffusion
- Title(参考訳): LighTDiff:T-Diffusionを用いた内視鏡下低光強調手術
- Authors: Tong Chen, Qingcheng Lyu, Long Bai, Erjian Guo, Huxin Gao, Xiaoxiao Yang, Hongliang Ren, Luping Zhou,
- Abstract要約: Denoising Diffusion Probabilistic Model (DDPM) は、医療分野での低照度画像強調を約束する。
DDPMは計算的に要求され、遅いため、医療応用は制限されている。
我々はLighTDiffと呼ばれる軽量DDPMを提案し、低解像度画像を用いてグローバルな構造情報をキャプチャする。
- 参考スコア(独自算出の注目度): 23.729378821117123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in endoscopy use in surgeries face challenges like inadequate lighting. Deep learning, notably the Denoising Diffusion Probabilistic Model (DDPM), holds promise for low-light image enhancement in the medical field. However, DDPMs are computationally demanding and slow, limiting their practical medical applications. To bridge this gap, we propose a lightweight DDPM, dubbed LighTDiff. It adopts a T-shape model architecture to capture global structural information using low-resolution images and gradually recover the details in subsequent denoising steps. We further prone the model to significantly reduce the model size while retaining performance. While discarding certain downsampling operations to save parameters leads to instability and low efficiency in convergence during the training, we introduce a Temporal Light Unit (TLU), a plug-and-play module, for more stable training and better performance. TLU associates time steps with denoised image features, establishing temporal dependencies of the denoising steps and improving denoising outcomes. Moreover, while recovering images using the diffusion model, potential spectral shifts were noted. We further introduce a Chroma Balancer (CB) to mitigate this issue. Our LighTDiff outperforms many competitive LLIE methods with exceptional computational efficiency.
- Abstract(参考訳): 外科手術における内視鏡使用の進歩は、不適切な照明のような課題に直面している。
深層学習、特にDenoising Diffusion Probabilistic Model (DDPM)は、医療分野での低照度画像の強化を約束している。
しかし、DDPMは計算的に要求され、遅いため、医療応用は制限されている。
このギャップを埋めるため、LighTDiffと呼ばれる軽量DDPMを提案する。
低解像度画像を用いてグローバルな構造情報をキャプチャし、その後の復調ステップで細部を徐々に復元するT字型モデルアーキテクチャを採用している。
さらに、性能を維持しながらモデルサイズを大幅に削減する傾向にある。
パラメータを節約するために特定のダウンサンプリング操作を破棄することは、トレーニング中の不安定性と収束効率の低下につながるが、より安定したトレーニングとパフォーマンス向上のためのプラグアンドプレイモジュールであるTLU(Temporal Light Unit)を導入する。
TLUは、時間ステップとデノナイズドイメージの特徴を関連付け、デノナイズされたステップの時間的依存関係を確立し、デノナイズされた結果を改善する。
さらに,拡散モデルを用いて画像の復元を行ったところ,電位スペクトルシフトが認められた。
さらに、この問題を緩和するために、クロマ・バランサ(CB)を導入します。
我々のLighTDiffは、優れた計算効率で多くの競合LLIE法より優れている。
関連論文リスト
- Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
本研究では,画像復元のための新しい,効率的な拡散モデルを提案する。
提案手法は,推論中の後処理の高速化を回避し,関連する性能劣化を回避する。
提案手法は,3つの古典的IRタスクにおける現在の最先端手法よりも優れた,あるいは同等の性能を実現する。
論文 参考訳(メタデータ) (2024-03-12T05:06:07Z) - Speeding up Photoacoustic Imaging using Diffusion Models [0.0]
光音響顕微鏡(PAM)は、光学的および音響的イメージングを統合し、組織内の光学吸収成分を検出するための浸透深度を向上させる。
レーザーパルス繰り返し速度による速度制限により、計算手法の潜在的な役割は、PAMイメージングの加速において強調される。
PAM画像の高速化に拡散モデルを用いた,新しい高適応DiffPamアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:34:27Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
本稿では,事前学習した潜伏拡散モデルを用いて,超低照度画像の高精細化のためのニューラルISPを実現することを提案する。
具体的には、RAWドメイン上で動作するために事前訓練された潜在拡散モデルを調整するために、軽量なテーミングモジュールのセットをトレーニングする。
遅延拡散モデルにおけるUNet復調と復号化の異なる役割を観察し、低照度画像強調タスクを遅延空間低周波コンテンツ生成と復号位相高周波ディテール保守に分解するきっかけとなる。
論文 参考訳(メタデータ) (2023-12-02T04:31:51Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
本稿では,低照度画像強調問題に対処する拡散型フレームワークについて検討する。
我々は、その固有のODE-軌道の正規化を提唱する。
実験により,提案手法は低照度化において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-10-26T17:01:52Z) - LLCaps: Learning to Illuminate Low-Light Capsule Endoscopy with Curved
Wavelet Attention and Reverse Diffusion [24.560417980602928]
ワイヤレスカプセル内視鏡(Wireless capsule endoscopy, WCE)は、消化器疾患の無痛・非侵襲診断ツールである。
医学領域における深層学習に基づく低照度画像強調(LLIE)は徐々に研究者を惹きつける。
マルチスケール畳み込みニューラルネットワーク(CNN)と逆拡散プロセスに基づく WCE LLIE フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-05T17:23:42Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - CoreDiff: Contextual Error-Modulated Generalized Diffusion Model for
Low-Dose CT Denoising and Generalization [41.64072751889151]
低線量CT(LDCT)画像は光子飢餓と電子ノイズによりノイズやアーティファクトに悩まされる。
本稿では,低用量CT (LDCT) 用新しいCOntextual eRror-modulated gEneralized Diffusion Model(CoreDiff)を提案する。
論文 参考訳(メタデータ) (2023-04-04T14:13:13Z) - Diffusion Probabilistic Model Made Slim [128.2227518929644]
軽量画像合成のためのスリム拡散確率モデル(DPM)のカスタマイズ設計を提案する。
一連の条件および非条件画像生成タスクにおける遅延拡散モデルと比較して,計算複雑性を8-18倍に削減する。
論文 参考訳(メタデータ) (2022-11-27T16:27:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。