A Hybrid Deep Learning Framework for Stock Price Prediction Considering the Investor Sentiment of Online Forum Enhanced by Popularity
- URL: http://arxiv.org/abs/2405.10584v1
- Date: Fri, 17 May 2024 07:18:08 GMT
- Title: A Hybrid Deep Learning Framework for Stock Price Prediction Considering the Investor Sentiment of Online Forum Enhanced by Popularity
- Authors: Huiyu Li, Junhua Hu,
- Abstract summary: Using cutting-edge deep learning techniques, stock price prediction based on investor sentiment extracted from online forums has become feasible.
We propose a novel hybrid deep learning framework for predicting stock prices.
- Score: 0.5893124686141782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stock price prediction has always been a difficult task for forecasters. Using cutting-edge deep learning techniques, stock price prediction based on investor sentiment extracted from online forums has become feasible. We propose a novel hybrid deep learning framework for predicting stock prices. The framework leverages the XLNET model to analyze the sentiment conveyed in user posts on online forums, combines these sentiments with the post popularity factor to compute daily group sentiments, and integrates this information with stock technical indicators into an improved BiLSTM-highway model for stock price prediction. Through a series of comparative experiments involving four stocks on the Chinese stock market, it is demonstrated that the hybrid framework effectively predicts stock prices. This study reveals the necessity of analyzing investors' textual views for stock price prediction.
Related papers
- Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning [0.0]
The study builds upon existing literature on stock price prediction methods, emphasizing the shift toward machine learning and deep learning approaches.
Using historical stock prices of 180 stocks across 18 sectors listed on the NSE, India, the LSTM model predicts future prices.
Results demonstrate the efficacy of the LSTM model in accurately predicting stock prices and informing investment decisions.
arXiv Detail & Related papers (2024-05-28T17:55:54Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Deep learning based Chinese text sentiment mining and stock market
correlation research [6.000327333763521]
We explore how to crawl financial forum data such as stock bars and combine them with deep learning models for sentiment analysis.
In this paper, we will use the BERT model to train against the financial corpus and predict the SZSE Component Index.
The obtained sentiment features will be able to reflect the fluctuations in the stock market and help to improve the prediction accuracy effectively.
arXiv Detail & Related papers (2022-05-10T08:35:33Z) - A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools
Stock Prediction [100.9772316028191]
In this paper, we experiment with a variety of adversarial attack configurations to fool three stock prediction victim models.
Our results show that the proposed attack method can achieve consistent success rates and cause significant monetary loss in trading simulation.
arXiv Detail & Related papers (2022-05-01T05:12:22Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
Several methods were recently proposed to mine the shared information through stock concepts extracted from the Web to improve the forecasting results.
Previous work assumes the connections between stocks and concepts are stationary, and neglects the dynamic relevance between stocks and concepts.
We propose a novel stock trend forecasting framework that can adequately mine the concept-oriented shared information from predefined concepts and hidden concepts.
arXiv Detail & Related papers (2021-10-26T14:04:04Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Stock price prediction using BERT and GAN [0.0]
This paper proposes an ensemble of state-of-the-art methods for predicting stock prices.
It uses a version of BERT, which is a pre-trained transformer model by Google for Natural Language Processing (NLP)
After, a Generative Adversarial Network (GAN) predicts the stock price for Apple Inc using the technical indicators, stock indexes of various countries, some commodities, and historical prices along with the sentiment scores.
arXiv Detail & Related papers (2021-07-18T18:31:43Z) - A Novel Deep Reinforcement Learning Based Stock Direction Prediction
using Knowledge Graph and Community Aware Sentiments [0.0]
The proposed novel model achieves remarkable results for stock market prediction task.
In order to demonstrate the effectiveness of the proposed model, Garanti Bank (GARAN), Akbank (AKBNK), T"urkiye.Ics Bankasi (ISCTR) stocks in Istanbul Stock Exchange are used as a case study.
arXiv Detail & Related papers (2021-07-02T09:39:41Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
arXiv Detail & Related papers (2020-09-29T22:54:30Z) - Towards Earnings Call and Stock Price Movement [7.196468151661785]
We propose to model the language in transcripts using a deep learning framework.
We show that the proposed model is superior to the traditional machine learning baselines.
arXiv Detail & Related papers (2020-08-23T20:38:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.