Second Law of Entanglement Manipulation with Entanglement Battery
- URL: http://arxiv.org/abs/2405.10599v1
- Date: Fri, 17 May 2024 07:55:04 GMT
- Title: Second Law of Entanglement Manipulation with Entanglement Battery
- Authors: Ray Ganardi, Tulja Varun Kondra, Nelly H. Y. Ng, Alexander Streltsov,
- Abstract summary: A central question since the beginning of quantum information science is how two distant parties can convert one entangled state into another.
It has been conjectured that entangled state transformations could be executed reversibly in an regime, mirroring the nature of Carnot cycles in classical thermodynamics.
We investigate the concept of an entanglement battery, an auxiliary quantum system that facilitates quantum state transformations without a net loss of entanglement.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central question since the beginning of quantum information science is how two distant parties can convert one entangled state into another. Answers to these questions enable us to optimize the performance of tasks such as quantum key distribution and quantum teleportation, since certain entangled states are more useful than others for these applications. It has been conjectured that entangled state transformations could be executed reversibly in an asymptotic regime, mirroring the reversible nature of Carnot cycles in classical thermodynamics. While a conclusive proof of this conjecture has been missing so far, earlier studies excluded reversible entanglement manipulation in various settings. In this work, we investigate the concept of an entanglement battery, an auxiliary quantum system that facilitates quantum state transformations without a net loss of entanglement. We establish that reversible manipulation of entangled states is achievable through local operations when augmented with an entanglement battery. In this setting, two distant parties can convert any entangled state into another of equivalent entanglement. The rate of asymptotic transformation is quantitatively expressed as a ratio of the entanglement present within the quantum states involved. Different entanglement quantifiers give rise to unique principles governing state transformations, effectively constituting diverse manifestations of a "second law" of entanglement manipulation. Our methods provide a solution to the long-standing open question regarding the reversible manipulation of entangled states and are also applicable to entangled systems involving more than two parties, and to other quantum resource theories, including quantum thermodynamics.
Related papers
- Quantum switch as a thermodynamic resource in the context of passive
states [0.0]
We study whether quantum switch is capable of activating a passive state.
We show that quantum switch is not a thermodynamic resource in the discussed context.
arXiv Detail & Related papers (2024-02-16T14:47:41Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum simulation of thermodynamics in an integrated quantum photonic
processor [0.0]
We show that a multi-partite quantum state causes the state of local subsystems to evolve towards maximum-entropy states.
Our results show the potential of photonic devices for quantum simulations involving non-Gaussian states.
arXiv Detail & Related papers (2021-12-31T20:19:31Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Quantifying the unextendibility of entanglement [13.718093420358827]
Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility.
We present a framework for quantifying and investigating the unextendibility of general bipartite quantum states.
arXiv Detail & Related papers (2019-11-18T05:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.