MC-GPT: Empowering Vision-and-Language Navigation with Memory Map and Reasoning Chains
- URL: http://arxiv.org/abs/2405.10620v2
- Date: Mon, 12 Aug 2024 14:07:32 GMT
- Title: MC-GPT: Empowering Vision-and-Language Navigation with Memory Map and Reasoning Chains
- Authors: Zhaohuan Zhan, Lisha Yu, Sijie Yu, Guang Tan,
- Abstract summary: In the Vision-and-Language Navigation (VLN) task, the agent is required to navigate to a destination following a natural language instruction.
While learning-based approaches have been a major solution to the task, they suffer from high training costs and lack of interpretability.
Recently, Large Language Models (LLMs) have emerged as a promising tool for VLN due to their strong generalization capabilities.
- Score: 4.941781282578696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the Vision-and-Language Navigation (VLN) task, the agent is required to navigate to a destination following a natural language instruction. While learning-based approaches have been a major solution to the task, they suffer from high training costs and lack of interpretability. Recently, Large Language Models (LLMs) have emerged as a promising tool for VLN due to their strong generalization capabilities. However, existing LLM-based methods face limitations in memory construction and diversity of navigation strategies. To address these challenges, we propose a suite of techniques. Firstly, we introduce a method to maintain a topological map that stores navigation history, retaining information about viewpoints, objects, and their spatial relationships. This map also serves as a global action space. Additionally, we present a Navigation Chain of Thoughts module, leveraging human navigation examples to enrich navigation strategy diversity. Finally, we establish a pipeline that integrates navigational memory and strategies with perception and action prediction modules. Experimental results on the REVERIE and R2R datasets show that our method effectively enhances the navigation ability of the LLM and improves the interpretability of navigation reasoning.
Related papers
- Cog-GA: A Large Language Models-based Generative Agent for Vision-Language Navigation in Continuous Environments [19.818370526976974]
Vision Language Navigation in Continuous Environments (VLN-CE) represents a frontier in embodied AI.
We introduce Cog-GA, a generative agent founded on large language models (LLMs) tailored for VLN-CE tasks.
Cog-GA employs a dual-pronged strategy to emulate human-like cognitive processes.
arXiv Detail & Related papers (2024-09-04T08:30:03Z) - TINA: Think, Interaction, and Action Framework for Zero-Shot Vision Language Navigation [11.591176410027224]
This paper presents a Vision-Language Navigation (VLN) agent based on Large Language Models (LLMs)
We propose the Thinking, Interacting, and Action framework to compensate for the shortcomings of LLMs in environmental perception.
Our approach also outperformed some supervised learning-based methods, highlighting its efficacy in zero-shot navigation.
arXiv Detail & Related papers (2024-03-13T05:22:39Z) - NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning
Disentangled Reasoning [101.56342075720588]
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions.
Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability.
This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision.
arXiv Detail & Related papers (2024-03-12T07:27:02Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
We propose a navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps.
Ego$2$-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation.
arXiv Detail & Related papers (2023-07-23T14:01:05Z) - NavGPT: Explicit Reasoning in Vision-and-Language Navigation with Large
Language Models [17.495162643127003]
We introduce the NavGPT to reveal the reasoning capability of GPT models in complex embodied scenes.
NavGPT takes the textual descriptions of visual observations, navigation history, and future explorable directions as inputs to reason the agent's current status.
We show that NavGPT is capable of generating high-quality navigational instructions from observations and actions along a path.
arXiv Detail & Related papers (2023-05-26T14:41:06Z) - KERM: Knowledge Enhanced Reasoning for Vision-and-Language Navigation [61.08389704326803]
Vision-and-language navigation (VLN) is the task to enable an embodied agent to navigate to a remote location following the natural language instruction in real scenes.
Most of the previous approaches utilize the entire features or object-centric features to represent navigable candidates.
We propose a Knowledge Enhanced Reasoning Model (KERM) to leverage knowledge to improve agent navigation ability.
arXiv Detail & Related papers (2023-03-28T08:00:46Z) - Structured Scene Memory for Vision-Language Navigation [155.63025602722712]
We propose a crucial architecture for vision-language navigation (VLN)
It is compartmentalized enough to accurately memorize the percepts during navigation.
It also serves as a structured scene representation, which captures and disentangles visual and geometric cues in the environment.
arXiv Detail & Related papers (2021-03-05T03:41:00Z) - Unsupervised Domain Adaptation for Visual Navigation [115.85181329193092]
We propose an unsupervised domain adaptation method for visual navigation.
Our method translates the images in the target domain to the source domain such that the translation is consistent with the representations learned by the navigation policy.
arXiv Detail & Related papers (2020-10-27T18:22:43Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
Vision-language navigation (VLN) is the task of entailing an agent to carry out navigational instructions inside photo-realistic environments.
One of the key challenges in VLN is how to conduct a robust navigation by mitigating the uncertainty caused by ambiguous instructions and insufficient observation of the environment.
This work draws inspiration from human navigation behavior and endows an agent with an active information gathering ability for a more intelligent VLN policy.
arXiv Detail & Related papers (2020-07-15T23:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.