Cog-GA: A Large Language Models-based Generative Agent for Vision-Language Navigation in Continuous Environments
- URL: http://arxiv.org/abs/2409.02522v2
- Date: Mon, 23 Sep 2024 03:18:27 GMT
- Title: Cog-GA: A Large Language Models-based Generative Agent for Vision-Language Navigation in Continuous Environments
- Authors: Zhiyuan Li, Yanfeng Lu, Yao Mu, Hong Qiao,
- Abstract summary: Vision Language Navigation in Continuous Environments (VLN-CE) represents a frontier in embodied AI.
We introduce Cog-GA, a generative agent founded on large language models (LLMs) tailored for VLN-CE tasks.
Cog-GA employs a dual-pronged strategy to emulate human-like cognitive processes.
- Score: 19.818370526976974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision Language Navigation in Continuous Environments (VLN-CE) represents a frontier in embodied AI, demanding agents to navigate freely in unbounded 3D spaces solely guided by natural language instructions. This task introduces distinct challenges in multimodal comprehension, spatial reasoning, and decision-making. To address these challenges, we introduce Cog-GA, a generative agent founded on large language models (LLMs) tailored for VLN-CE tasks. Cog-GA employs a dual-pronged strategy to emulate human-like cognitive processes. Firstly, it constructs a cognitive map, integrating temporal, spatial, and semantic elements, thereby facilitating the development of spatial memory within LLMs. Secondly, Cog-GA employs a predictive mechanism for waypoints, strategically optimizing the exploration trajectory to maximize navigational efficiency. Each waypoint is accompanied by a dual-channel scene description, categorizing environmental cues into 'what' and 'where' streams as the brain. This segregation enhances the agent's attentional focus, enabling it to discern pertinent spatial information for navigation. A reflective mechanism complements these strategies by capturing feedback from prior navigation experiences, facilitating continual learning and adaptive replanning. Extensive evaluations conducted on VLN-CE benchmarks validate Cog-GA's state-of-the-art performance and ability to simulate human-like navigation behaviors. This research significantly contributes to the development of strategic and interpretable VLN-CE agents.
Related papers
- UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation [71.97405667493477]
We introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN.
It enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features.
UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
arXiv Detail & Related papers (2024-11-25T02:44:59Z) - MC-GPT: Empowering Vision-and-Language Navigation with Memory Map and Reasoning Chains [4.941781282578696]
In the Vision-and-Language Navigation (VLN) task, the agent is required to navigate to a destination following a natural language instruction.
While learning-based approaches have been a major solution to the task, they suffer from high training costs and lack of interpretability.
Recently, Large Language Models (LLMs) have emerged as a promising tool for VLN due to their strong generalization capabilities.
arXiv Detail & Related papers (2024-05-17T08:33:27Z) - NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning
Disentangled Reasoning [101.56342075720588]
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions.
Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability.
This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision.
arXiv Detail & Related papers (2024-03-12T07:27:02Z) - A Dual Semantic-Aware Recurrent Global-Adaptive Network For
Vision-and-Language Navigation [3.809880620207714]
Vision-and-Language Navigation (VLN) is a realistic but challenging task that requires an agent to locate the target region using verbal and visual cues.
This work proposes a dual semantic-aware recurrent global-adaptive network (DSRG) to address the above problems.
arXiv Detail & Related papers (2023-05-05T15:06:08Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
We introduce prompt-based learning to achieve fast adaptation for language embeddings.
Our model can adapt to diverse vision-language navigation tasks, including VLN and REVERIE.
arXiv Detail & Related papers (2022-03-08T11:01:24Z) - Think Global, Act Local: Dual-scale Graph Transformer for
Vision-and-Language Navigation [87.03299519917019]
We propose a dual-scale graph transformer (DUET) for joint long-term action planning and fine-grained cross-modal understanding.
We build a topological map on-the-fly to enable efficient exploration in global action space.
The proposed approach, DUET, significantly outperforms state-of-the-art methods on goal-oriented vision-and-language navigation benchmarks.
arXiv Detail & Related papers (2022-02-23T19:06:53Z) - Structured Scene Memory for Vision-Language Navigation [155.63025602722712]
We propose a crucial architecture for vision-language navigation (VLN)
It is compartmentalized enough to accurately memorize the percepts during navigation.
It also serves as a structured scene representation, which captures and disentangles visual and geometric cues in the environment.
arXiv Detail & Related papers (2021-03-05T03:41:00Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.