Historically Relevant Event Structuring for Temporal Knowledge Graph Reasoning
- URL: http://arxiv.org/abs/2405.10621v1
- Date: Fri, 17 May 2024 08:33:43 GMT
- Title: Historically Relevant Event Structuring for Temporal Knowledge Graph Reasoning
- Authors: Jinchuan Zhang, Bei Hui, Chong Mu, Ming Sun, Ling Tian,
- Abstract summary: Temporal Knowledge Graph (TKG) reasoning focuses on predicting events through historical information within snapshots distributed on a timeline.
We propose an innovative TKG reasoning approach towards textbfHistorically textbfRelevant textbfEvents textbfStructuring ($mathsfHisRES$)
- Score: 5.510391547468202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal Knowledge Graph (TKG) reasoning focuses on predicting events through historical information within snapshots distributed on a timeline. Existing studies mainly concentrate on two perspectives of leveraging the history of TKGs, including capturing evolution of each recent snapshot or correlations among global historical facts. Despite the achieved significant accomplishments, these models still fall short of (1) investigating the influences of multi-granularity interactions across recent snapshots and (2) harnessing the expressive semantics of significant links accorded with queries throughout the entire history, especially events exerting a profound impact on the future. These inadequacies restrict representation ability to reflect historical dependencies and future trends thoroughly. To overcome these drawbacks, we propose an innovative TKG reasoning approach towards \textbf{His}torically \textbf{R}elevant \textbf{E}vents \textbf{S}tructuring ($\mathsf{HisRES}$). Concretely, $\mathsf{HisRES}$ comprises two distinctive modules excelling in structuring historically relevant events within TKGs, including a multi-granularity evolutionary encoder that captures structural and temporal dependencies of the most recent snapshots, and a global relevance encoder that concentrates on crucial correlations among events relevant to queries from the entire history. Furthermore, $\mathsf{HisRES}$ incorporates a self-gating mechanism for adaptively merging multi-granularity recent and historically relevant structuring representations. Extensive experiments on four event-based benchmarks demonstrate the state-of-the-art performance of $\mathsf{HisRES}$ and indicate the superiority and effectiveness of structuring historical relevance for TKG reasoning.
Related papers
- Learning Granularity Representation for Temporal Knowledge Graph Completion [2.689675451882683]
Temporal Knowledge Graphs (TKGs) incorporate temporal information to reflect the dynamic structural knowledge and evolutionary patterns of real-world facts.
This paper proposes textbfLearning textbfGranularity textbfRepresentation (termed $mathsfLGRe$) for TKG completion.
It comprises two main components: Granularity Learning (GRL) and Adaptive Granularity Balancing (AGB)
arXiv Detail & Related papers (2024-08-27T08:19:34Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding [57.62275091656578]
We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE)
This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE.
arXiv Detail & Related papers (2024-06-04T16:42:17Z) - Learning Multi-graph Structure for Temporal Knowledge Graph Reasoning [3.3571415078869955]
This paper proposes an innovative reasoning approach that focuses on Learning Multi-graph Structure (LMS)
LMS incorporates an adaptive gate for merging entity representations both along and across timestamps effectively.
It also integrates timestamp semantics into graph attention calculations and time-aware decoders.
arXiv Detail & Related papers (2023-12-04T08:23:09Z) - Local-Global History-aware Contrastive Learning for Temporal Knowledge
Graph Reasoning [25.497749629866757]
We propose a novel blueLocal-blueglobal history-aware blueContrastive blueL model (blueLogCL) for temporal knowledge graphs.
For the first challenge, LogCL proposes an entity-aware attention mechanism applied to the local and global historical facts encoder.
For the latter issue, LogCL designs four historical query contrast patterns, effectively improving the robustness of the model.
arXiv Detail & Related papers (2023-12-04T03:27:01Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
We propose a new event forecasting model based on a novel training framework of historical contrastive learning.
CENET learns both the historical and non-historical dependency to distinguish the most potential entities.
We evaluate our proposed model on five benchmark graphs.
arXiv Detail & Related papers (2023-08-29T03:26:38Z) - Causal Triplet: An Open Challenge for Intervention-centric Causal
Representation Learning [98.78136504619539]
Causal Triplet is a causal representation learning benchmark featuring visually more complex scenes.
We show that models built with the knowledge of disentangled or object-centric representations significantly outperform their distributed counterparts.
arXiv Detail & Related papers (2023-01-12T17:43:38Z) - Temporal Knowledge Graph Reasoning with Historical Contrastive Learning [24.492458924487863]
We propose a new event forecasting model called Contrastive Event Network (CENET)
CENET learns both the historical and non-historical dependency to distinguish the most potential entities that can best match the given query.
During the inference process, CENET employs a mask-based strategy to generate the final results.
arXiv Detail & Related papers (2022-11-20T08:32:59Z) - Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning [59.004025528223025]
Key to predict future facts is to thoroughly understand the historical facts.
A TKG is actually a sequence of KGs corresponding to different timestamps.
We propose a novel Recurrent Evolution network based on Graph Convolution Network (GCN)
arXiv Detail & Related papers (2021-04-21T05:12:21Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
We propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity.
Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations.
arXiv Detail & Related papers (2020-05-02T15:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.