CEGRL-TKGR: A Causal Enhanced Graph Representation Learning Framework for Temporal Knowledge Graph Reasoning
- URL: http://arxiv.org/abs/2408.07911v2
- Date: Fri, 24 Jan 2025 10:37:25 GMT
- Title: CEGRL-TKGR: A Causal Enhanced Graph Representation Learning Framework for Temporal Knowledge Graph Reasoning
- Authors: Jinze Sun, Yongpan Sheng, Lirong He, Yongbin Qin, Ming Liu, Tao Jia,
- Abstract summary: We propose an innovative Causal Enhanced Graph Representation Learning framework for TKGR (named CEGRL-TKGR)
This framework introduces causal structures in graph-based representation learning to unveil the essential causal relationships between events.
We also advocate the utilization of causal representations for predictions, aiming to mitigate the effects of erroneous correlations caused by confounding features.
- Score: 7.738230390425271
- License:
- Abstract: Temporal knowledge graph reasoning (TKGR) is increasingly gaining attention for its ability to extrapolate new events from historical data, thereby enriching the inherently incomplete temporal knowledge graphs. Existing graph-based representation learning frameworks have made significant strides in developing evolving representations for both entities and relational embeddings. Despite these achievements, there's a notable tendency in these models to inadvertently learn biased data representations and mine spurious correlations, consequently failing to discern the causal relationships between events. This often leads to incorrect predictions based on these false correlations. To address this, we propose an innovative Causal Enhanced Graph Representation Learning framework for TKGR (named CEGRL-TKGR). This framework introduces causal structures in graph-based representation learning to unveil the essential causal relationships between events, ultimately enhancing the performance of the TKGR task. Specifically, we first disentangle the evolutionary representations of entities and relations in a temporal knowledge graph sequence into two distinct components, namely causal representations and confounding representations. Then, drawing on causal intervention theory, we advocate the utilization of causal representations for predictions, aiming to mitigate the effects of erroneous correlations caused by confounding features, thus achieving more robust and accurate predictions. Finally, extensive experimental results on six benchmark datasets demonstrate the superior performance of our model in the link prediction task.
Related papers
- Disentangled Generative Graph Representation Learning [51.59824683232925]
This paper introduces DiGGR (Disentangled Generative Graph Representation Learning), a self-supervised learning framework.
It aims to learn latent disentangled factors and utilize them to guide graph mask modeling.
Experiments on 11 public datasets for two different graph learning tasks demonstrate that DiGGR consistently outperforms many previous self-supervised methods.
arXiv Detail & Related papers (2024-08-24T05:13:02Z) - Introducing Diminutive Causal Structure into Graph Representation Learning [19.132025125620274]
We introduce a novel method that enables Graph Neural Networks (GNNs) to glean insights from specialized diminutive causal structures.
Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures.
arXiv Detail & Related papers (2024-06-13T00:18:20Z) - zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models [33.10218179341504]
We use large language models to generate relation representations for embedding-based TKGF methods.
We show that our approach helps TKGF models to achieve much better performance in forecasting the facts with previously unseen relations.
arXiv Detail & Related papers (2023-11-15T21:25:15Z) - Knowledge Graph Completion with Counterfactual Augmentation [23.20561746976504]
We introduce a counterfactual question: "would the relation still exist if the neighborhood of entities became different from observation?"
With a carefully designed instantiation of a causal model on the knowledge graph, we generate the counterfactual relations to answer the question.
We incorporate the created counterfactual relations with the GNN-based framework on KGs to augment their learning of entity pair representations.
arXiv Detail & Related papers (2023-02-25T14:08:15Z) - Causally-guided Regularization of Graph Attention Improves
Generalizability [69.09877209676266]
We introduce CAR, a general-purpose regularization framework for graph attention networks.
Methodname aligns the attention mechanism with the causal effects of active interventions on graph connectivity.
For social media network-sized graphs, a CAR-guided graph rewiring approach could allow us to combine the scalability of graph convolutional methods with the higher performance of graph attention.
arXiv Detail & Related papers (2022-10-20T01:29:10Z) - CLEAR: Generative Counterfactual Explanations on Graphs [60.30009215290265]
We study the problem of counterfactual explanation generation on graphs.
A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed.
We propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models.
arXiv Detail & Related papers (2022-10-16T04:35:32Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
We propose Robust Causal Graph Representation Learning (RCGRL) to learn robust graph representations against confounding effects.
RCGRL introduces an active approach to generate instrumental variables under unconditional moment restrictions, which empowers the graph representation learning model to eliminate confounders.
arXiv Detail & Related papers (2022-08-18T01:31:25Z) - Learning Representations of Entities and Relations [0.0]
This thesis focuses on improving knowledge graph representation with the aim of tackling the link prediction task.
The first contribution is HypER, a convolutional model which simplifies and improves upon the link prediction performance.
The second contribution is TuckER, a relatively straightforward linear model, which, at the time of its introduction, obtained state-of-the-art link prediction performance.
The third contribution is MuRP, first multi-relational graph representation model embedded in hyperbolic space.
arXiv Detail & Related papers (2022-01-31T09:24:43Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - One-shot Learning for Temporal Knowledge Graphs [49.41854171118697]
We propose a one-shot learning framework for link prediction in temporal knowledge graphs.
Our proposed method employs a self-attention mechanism to effectively encode temporal interactions between entities.
Our experiments show that the proposed algorithm outperforms the state of the art baselines for two well-studied benchmarks.
arXiv Detail & Related papers (2020-10-23T03:24:44Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.