Cost-Effective Fault Tolerance for CNNs Using Parameter Vulnerability Based Hardening and Pruning
- URL: http://arxiv.org/abs/2405.10658v1
- Date: Fri, 17 May 2024 09:42:44 GMT
- Title: Cost-Effective Fault Tolerance for CNNs Using Parameter Vulnerability Based Hardening and Pruning
- Authors: Mohammad Hasan Ahmadilivani, Seyedhamidreza Mousavi, Jaan Raik, Masoud Daneshtalab, Maksim Jenihhin,
- Abstract summary: This paper introduces a model-level hardening approach for CNNs by integrating error correction directly into the neural networks.
The proposed method demonstrates fault resilience nearly equivalent to TMR-based correction but with significantly reduced overhead.
Remarkably, the hardened pruned CNNs perform up to 24% faster than the hardened un-pruned ones.
- Score: 0.4660328753262075
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have become integral in safety-critical applications, thus raising concerns about their fault tolerance. Conventional hardware-dependent fault tolerance methods, such as Triple Modular Redundancy (TMR), are computationally expensive, imposing a remarkable overhead on CNNs. Whereas fault tolerance techniques can be applied either at the hardware level or at the model levels, the latter provides more flexibility without sacrificing generality. This paper introduces a model-level hardening approach for CNNs by integrating error correction directly into the neural networks. The approach is hardware-agnostic and does not require any changes to the underlying accelerator device. Analyzing the vulnerability of parameters enables the duplication of selective filters/neurons so that their output channels are effectively corrected with an efficient and robust correction layer. The proposed method demonstrates fault resilience nearly equivalent to TMR-based correction but with significantly reduced overhead. Nevertheless, there exists an inherent overhead to the baseline CNNs. To tackle this issue, a cost-effective parameter vulnerability based pruning technique is proposed that outperforms the conventional pruning method, yielding smaller networks with a negligible accuracy loss. Remarkably, the hardened pruned CNNs perform up to 24\% faster than the hardened un-pruned ones.
Related papers
- Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
Regularizing Deep Neural Networks (DNNs) is essential for improving generalizability and preventing overfitting.
We propose a novel approach to DNN regularization by framing the training process as a constrained optimization problem.
We employ the Augmented Lagrangian (SAL) method to achieve a more flexible and efficient regularization mechanism.
arXiv Detail & Related papers (2023-10-25T13:55:35Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Improving Reliability of Spiking Neural Networks through Fault Aware
Threshold Voltage Optimization [0.0]
Spiking neural networks (SNNs) have made breakthroughs in computer vision by lending themselves to neuromorphic hardware.
Systolic-array SNN accelerators (systolicSNNs) have been proposed recently, but their reliability is still a major concern.
We present a novel fault mitigation method, i.e., fault-aware threshold voltage optimization in retraining (FalVolt)
arXiv Detail & Related papers (2023-01-12T19:30:21Z) - CorrectNet: Robustness Enhancement of Analog In-Memory Computing for
Neural Networks by Error Suppression and Compensation [4.570841222958966]
We propose a framework to enhance the robustness of neural networks under variations and noise.
We show that inference accuracy of neural networks can be recovered from as low as 1.69% under variations and noise.
arXiv Detail & Related papers (2022-11-27T19:13:33Z) - Towards Practical Control of Singular Values of Convolutional Layers [65.25070864775793]
Convolutional neural networks (CNNs) are easy to train, but their essential properties, such as generalization error and adversarial robustness, are hard to control.
Recent research demonstrated that singular values of convolutional layers significantly affect such elusive properties.
We offer a principled approach to alleviating constraints of the prior art at the expense of an insignificant reduction in layer expressivity.
arXiv Detail & Related papers (2022-11-24T19:09:44Z) - Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness [172.61581010141978]
Certifiable robustness is a desirable property for adopting deep neural networks (DNNs) in safety-critical scenarios.
We propose a novel solution to strategically manipulate neurons, by "grafting" appropriate levels of linearity.
arXiv Detail & Related papers (2022-06-15T22:42:29Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Manipulating Identical Filter Redundancy for Efficient Pruning on Deep
and Complicated CNN [126.88224745942456]
We propose a novel Centripetal SGD (C-SGD) to make some filters identical, resulting in ideal redundancy patterns.
C-SGD delivers better performance because the redundancy is better organized, compared to the existing methods.
arXiv Detail & Related papers (2021-07-30T06:18:19Z) - MILR: Mathematically Induced Layer Recovery for Plaintext Space Error
Correction of CNNs [4.23546023847456]
This paper proposes MILR, a software based CNN error detection and error correction system.
The self-healing capabilities are based on mathematical relationships between the inputs,outputs, and parameters(weights) of a layers.
arXiv Detail & Related papers (2020-10-28T00:47:15Z) - CNNPruner: Pruning Convolutional Neural Networks with Visual Analytics [13.38218193857018]
Convolutional neural networks (CNNs) have demonstrated extraordinarily good performance in many computer vision tasks.
CNNPruner allows users to interactively create pruning plans according to a desired goal on model size or accuracy.
arXiv Detail & Related papers (2020-09-08T02:08:20Z) - FT-CNN: Algorithm-Based Fault Tolerance for Convolutional Neural
Networks [13.100954947774163]
Convolutional neural networks (CNNs) are becoming more and more important for solving challenging and critical problems in many fields.
CNN inference applications have been deployed in safety-critical systems, which may suffer from soft errors caused by high-energy particles, high temperature, or abnormal voltage.
Traditional fault tolerance methods are not suitable for CNN inference because error-correcting code is unable to protect computational components.
arXiv Detail & Related papers (2020-03-27T02:01:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.