CNNPruner: Pruning Convolutional Neural Networks with Visual Analytics
- URL: http://arxiv.org/abs/2009.09940v1
- Date: Tue, 8 Sep 2020 02:08:20 GMT
- Title: CNNPruner: Pruning Convolutional Neural Networks with Visual Analytics
- Authors: Guan Li, Junpeng Wang, Han-Wei Shen, Kaixin Chen, Guihua Shan, and
Zhonghua Lu
- Abstract summary: Convolutional neural networks (CNNs) have demonstrated extraordinarily good performance in many computer vision tasks.
CNNPruner allows users to interactively create pruning plans according to a desired goal on model size or accuracy.
- Score: 13.38218193857018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNNs) have demonstrated extraordinarily good
performance in many computer vision tasks. The increasing size of CNN models,
however, prevents them from being widely deployed to devices with limited
computational resources, e.g., mobile/embedded devices. The emerging topic of
model pruning strives to address this problem by removing less important
neurons and fine-tuning the pruned networks to minimize the accuracy loss.
Nevertheless, existing automated pruning solutions often rely on a numerical
threshold of the pruning criteria, lacking the flexibility to optimally balance
the trade-off between model size and accuracy. Moreover, the complicated
interplay between the stages of neuron pruning and model fine-tuning makes this
process opaque, and therefore becomes difficult to optimize. In this paper, we
address these challenges through a visual analytics approach, named CNNPruner.
It considers the importance of convolutional filters through both instability
and sensitivity, and allows users to interactively create pruning plans
according to a desired goal on model size or accuracy. Also, CNNPruner
integrates state-of-the-art filter visualization techniques to help users
understand the roles that different filters played and refine their pruning
plans. Through comprehensive case studies on CNNs with real-world sizes, we
validate the effectiveness of CNNPruner.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Scale-Invariant Object Detection by Adaptive Convolution with Unified Global-Local Context [3.061662434597098]
We propose an object detection model using a Switchable (adaptive) Atrous Convolutional Network (SAC-Net) based on the efficientDet model.
The proposed SAC-Net encapsulates the benefits of both low-level and high-level features to achieve improved performance on multi-scale object detection tasks.
Our experiments on benchmark datasets demonstrate that the proposed SAC-Net outperforms the state-of-the-art models by a significant margin in terms of accuracy.
arXiv Detail & Related papers (2024-09-17T10:08:37Z) - Application of Tensorized Neural Networks for Cloud Classification [0.0]
Convolutional neural networks (CNNs) have gained widespread usage across various fields such as weather forecasting, computer vision, autonomous driving, and medical image analysis.
However, the practical implementation and commercialization of CNNs in these domains are hindered by challenges related to model sizes, overfitting, and computational time.
We propose a groundbreaking approach that involves tensorizing the dense layers in the CNN to reduce model size and computational time.
arXiv Detail & Related papers (2024-03-21T06:28:22Z) - Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
arXiv Detail & Related papers (2023-07-21T13:51:45Z) - Complexity-Driven CNN Compression for Resource-constrained Edge AI [1.6114012813668934]
We propose a novel and computationally efficient pruning pipeline by exploiting the inherent layer-level complexities of CNNs.
We define three modes of pruning, namely parameter-aware (PA), FLOPs-aware (FA), and memory-aware (MA), to introduce versatile compression of CNNs.
arXiv Detail & Related papers (2022-08-26T16:01:23Z) - Go Beyond Multiple Instance Neural Networks: Deep-learning Models based
on Local Pattern Aggregation [0.0]
convolutional neural networks (CNNs) have brought breakthroughs in processing clinical electrocardiograms (ECGs) and speaker-independent speech.
In this paper, we propose local pattern aggregation-based deep-learning models to effectively deal with both problems.
The novel network structure, called LPANet, has cropping and aggregation operations embedded into it.
arXiv Detail & Related papers (2022-05-28T13:18:18Z) - Implicit Equivariance in Convolutional Networks [1.911678487931003]
Implicitly Equivariant Networks (IEN) induce equivariant in the different layers of a standard CNN model.
We show IEN outperforms the state-of-the-art rotation equivariant tracking method while providing faster inference speed.
arXiv Detail & Related papers (2021-11-28T14:44:17Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
A novel framework for proactive caching is proposed in this paper.
It combines model-based optimization with data-driven techniques by transforming an optimization problem into a grayscale image.
Numerical results show that the proposed scheme can reduce 71.6% computation time with only 0.8% additional performance cost.
arXiv Detail & Related papers (2021-08-15T21:32:47Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.