Training Compute Thresholds: Features and Functions in AI Regulation
- URL: http://arxiv.org/abs/2405.10799v2
- Date: Tue, 6 Aug 2024 15:33:20 GMT
- Title: Training Compute Thresholds: Features and Functions in AI Regulation
- Authors: Lennart Heim, Leonie Koessler,
- Abstract summary: Regulators in the US and EU are using thresholds based on training compute to identify GPAI models that may pose risks of large-scale societal harm.
We argue that training compute currently is the most suitable metric to identify GPAI models that deserve regulatory oversight and further scrutiny.
As GPAI technology and market structures evolve, regulators should update compute thresholds and complement them with other metrics into regulatory review processes.
- Score: 0.7234862895932991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regulators in the US and EU are using thresholds based on training compute--the number of computational operations used in training--to identify general-purpose artificial intelligence (GPAI) models that may pose risks of large-scale societal harm. We argue that training compute currently is the most suitable metric to identify GPAI models that deserve regulatory oversight and further scrutiny. Training compute correlates with model capabilities and risks, is quantifiable, can be measured early in the AI lifecycle, and can be verified by external actors, among other advantageous features. These features make compute thresholds considerably more suitable than other proposed metrics to serve as an initial filter to trigger additional regulatory requirements and scrutiny. However, training compute is an imperfect proxy for risk. As such, compute thresholds should not be used in isolation to determine appropriate mitigation measures. Instead, they should be used to detect potentially risky GPAI models that warrant regulatory oversight, such as through notification requirements, and further scrutiny, such as via model evaluations and risk assessments, the results of which may inform which mitigation measures are appropriate. In fact, this appears largely consistent with how compute thresholds are used today. As GPAI technology and market structures evolve, regulators should update compute thresholds and complement them with other metrics into regulatory review processes.
Related papers
- A hierarchical approach for assessing the vulnerability of tree-based classification models to membership inference attack [0.552480439325792]
Machine learning models can inadvertently expose confidential properties of their training data, making them vulnerable to membership inference attacks (MIA)
This article presents two new complementary approaches for efficiently identifying vulnerable tree-based models.
arXiv Detail & Related papers (2025-02-13T15:16:53Z) - Defending Compute Thresholds Against Legal Loopholes [0.7234862895932991]
Existing legal frameworks on AI rely on training compute thresholds as a proxy to identify potentially-dangerous AI models.
We examine some enhancement techniques that are capable of decreasing training compute usage while preserving, or even increasing, model capabilities.
These capability-enhancing and compute-saving techniques could constitute a legal loophole to existing training compute thresholds.
arXiv Detail & Related papers (2025-01-03T12:07:21Z) - Uncertainty measurement for complex event prediction in safety-critical systems [0.36832029288386137]
Complex events processing (CEP) uncertainty is critical for embedded and safety-critical systems.
This paper exemplifies how we can measure uncertainty for the perception and prediction of events.
We present and discuss our results, which are very promising within our field of research and work.
arXiv Detail & Related papers (2024-11-02T15:51:37Z) - Automatically Adaptive Conformal Risk Control [49.95190019041905]
We propose a methodology for achieving approximate conditional control of statistical risks by adapting to the difficulty of test samples.
Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning.
arXiv Detail & Related papers (2024-06-25T08:29:32Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
We derive a framework to analyze whether a transparent implementation in a computing model is feasible.
Based on previous results, we find that Blum-Shub-Smale Machines have the potential to establish trustworthy solvers for inverse problems.
arXiv Detail & Related papers (2024-01-18T15:32:38Z) - Dynamic Model Agnostic Reliability Evaluation of Machine-Learning
Methods Integrated in Instrumentation & Control Systems [1.8978726202765634]
Trustworthiness of datadriven neural network-based machine learning algorithms is not adequately assessed.
In recent reports by the National Institute for Standards and Technology, trustworthiness in ML is a critical barrier to adoption.
We demonstrate a real-time model-agnostic method to evaluate the relative reliability of ML predictions by incorporating out-of-distribution detection on the training dataset.
arXiv Detail & Related papers (2023-08-08T18:25:42Z) - Modeling Disagreement in Automatic Data Labelling for Semi-Supervised
Learning in Clinical Natural Language Processing [2.016042047576802]
We investigate the quality of uncertainty estimates from a range of current state-of-the-art predictive models applied to the problem of observation detection in radiology reports.
arXiv Detail & Related papers (2022-05-29T20:20:49Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
arXiv Detail & Related papers (2021-04-08T08:50:44Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education.
Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding.
We develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates.
arXiv Detail & Related papers (2020-02-10T00:26:43Z) - Assurance Monitoring of Cyber-Physical Systems with Machine Learning
Components [2.1320960069210484]
We investigate how to use the conformal prediction framework for assurance monitoring of Cyber-Physical Systems.
In order to handle high-dimensional inputs in real-time, we compute nonconformity scores using embedding representations of the learned models.
By leveraging conformal prediction, the approach provides well-calibrated confidence and can allow monitoring that ensures a bounded small error rate.
arXiv Detail & Related papers (2020-01-14T19:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.