Uncertainty-aware Remaining Useful Life predictor
- URL: http://arxiv.org/abs/2104.03613v1
- Date: Thu, 8 Apr 2021 08:50:44 GMT
- Title: Uncertainty-aware Remaining Useful Life predictor
- Authors: Luca Biggio, Alexander Wieland, Manuel Arias Chao, Iason Kastanis,
Olga Fink
- Abstract summary: Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
- Score: 57.74855412811814
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Remaining Useful Life (RUL) estimation is the problem of inferring how long a
certain industrial asset can be expected to operate within its defined
specifications. Deploying successful RUL prediction methods in real-life
applications is a prerequisite for the design of intelligent maintenance
strategies with the potential of drastically reducing maintenance costs and
machine downtimes. In light of their superior performance in a wide range of
engineering fields, Machine Learning (ML) algorithms are natural candidates to
tackle the challenges involved in the design of intelligent maintenance
systems. In particular, given the potentially catastrophic consequences or
substantial costs associated with maintenance decisions that are either too
late or too early, it is desirable that ML algorithms provide uncertainty
estimates alongside their predictions. However, standard data-driven methods
used for uncertainty estimation in RUL problems do not scale well to large
datasets or are not sufficiently expressive to model the high-dimensional
mapping from raw sensor data to RUL estimates. In this work, we consider Deep
Gaussian Processes (DGPs) as possible solutions to the aforementioned
limitations. We perform a thorough evaluation and comparison of several
variants of DGPs applied to RUL predictions. The performance of the algorithms
is evaluated on the N-CMAPSS (New Commercial Modular Aero-Propulsion System
Simulation) dataset from NASA for aircraft engines. The results show that the
proposed methods are able to provide very accurate RUL predictions along with
sensible uncertainty estimates, providing more reliable solutions for
(safety-critical) real-life industrial applications.
Related papers
- Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
We propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model.
Our method endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems.
Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions.
arXiv Detail & Related papers (2024-02-13T11:22:59Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
We propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning.
Experiment results on synthetic and three real-world recommendation datasets demonstrate the advantageous sample efficiency of the proposed UIPS estimator.
arXiv Detail & Related papers (2023-03-11T11:42:26Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Conformal Prediction Intervals for Remaining Useful Lifetime Estimation [5.171601921549565]
We investigate the conformal prediction (CP) framework that represents uncertainty by predicting sets of possible values for the target variable.
CP formally guarantees that the actual value (true RUL) is covered by the predicted set with a degree of certainty that can be prespecified.
We study three CP algorithms to conformalize any single-point RUL predictor and turn it into a valid interval predictor.
arXiv Detail & Related papers (2022-12-30T09:34:29Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
We propose BayesCap that learns a Bayesian identity mapping for the frozen model, allowing uncertainty estimation.
BayesCap is a memory-efficient method that can be trained on a small fraction of the original dataset.
We show the efficacy of our method on a wide variety of tasks with a diverse set of architectures.
arXiv Detail & Related papers (2022-07-14T12:50:09Z) - Accurate Remaining Useful Life Prediction with Uncertainty
Quantification: a Deep Learning and Nonstationary Gaussian Process Approach [0.0]
Remaining useful life (RUL) refers to the expected remaining lifespan of a component or system.
We devise a highly accurate RUL prediction model with uncertainty quantification, which integrates and leverages the advantages of deep learning and nonstationary Gaussian process regression (DL-NSGPR)
Our computational experiments show that the DL-NSGPR predictions are highly accurate with root mean square error 1.7 to 6.2 times smaller than those of competing RUL models.
arXiv Detail & Related papers (2021-09-23T18:19:58Z) - Entropy-based adaptive design for contour finding and estimating
reliability [0.24466725954625884]
In reliability analysis, methods used to estimate failure probability are often limited by the costs associated with model evaluations.
We introduce an entropy-based GP adaptive design that, when paired with MFIS, provides more accurate failure probability estimates.
Illustrative examples are provided on benchmark data as well as an application to an impact damage simulator for National Aeronautics and Space Administration (NASA) spacesuits.
arXiv Detail & Related papers (2021-05-24T15:41:15Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z) - Adaptive Degradation Process with Deep Learning-Driven Trajectory [5.060233857860902]
Remaining useful life (RUL) estimation is a crucial component in the implementation of intelligent predictive maintenance and health management.
This paper develops a hybrid DNN-based prognostic approach, where a Wiener-based-degradation model is enhanced with adaptive drift to characterize the system degradation.
An LSTM-CNN encoder-decoder is developed to predict future degradation trajectories by jointly learning noise coefficients as well as drift coefficients, and adaptive drift is updated via Bayesian inference.
arXiv Detail & Related papers (2021-03-22T06:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.