論文の概要: Automatic segmentation of Organs at Risk in Head and Neck cancer patients from CT and MRI scans
- arxiv url: http://arxiv.org/abs/2405.10833v1
- Date: Fri, 17 May 2024 14:54:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 15:53:32.526552
- Title: Automatic segmentation of Organs at Risk in Head and Neck cancer patients from CT and MRI scans
- Title(参考訳): CTおよびMRIによる頭頸部癌リスク臓器の自動分別
- Authors: Sébastien Quetin, Andrew Heschl, Mauricio Murillo, Murali Rohit, Shirin A. Enger, Farhad Maleki,
- Abstract要約: 深層学習(DL)は、OAR(Organs at Risk)セグメンテーションのために広く研究されている。
本研究は頭部癌と頸部癌患者のMRIおよびCTから30個のOARを分離するためのパイプラインを提案する。
- 参考スコア(独自算出の注目度): 0.0879626117219674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background and purpose: Deep Learning (DL) has been widely explored for Organs at Risk (OARs) segmentation; however, most studies have focused on a single modality, either CT or MRI, not both simultaneously. This study presents a high-performing DL pipeline for segmentation of 30 OARs from MRI and CT scans of Head and Neck (H&N) cancer patients. Materials and methods: Paired CT and MRI-T1 images from 42 H&N cancer patients alongside annotation for 30 OARs from the H&N OAR CT & MR segmentation challenge dataset were used to develop a segmentation pipeline. After cropping irrelevant regions, rigid followed by non-rigid registration of CT and MRI volumes was performed. Two versions of the CT volume, representing soft tissues and bone anatomy, were stacked with the MRI volume and used as input to an nnU-Net pipeline. Modality Dropout was used during the training to force the model to learn from the different modalities. Segmentation masks were predicted with the trained model for an independent set of 14 new patients. The mean Dice Score (DS) and Hausdorff Distance (HD) were calculated for each OAR across these patients to evaluate the pipeline. Results: This resulted in an overall mean DS and HD of 0.777 +- 0.118 and 3.455 +- 1.679, respectively, establishing the state-of-the-art (SOTA) for this challenge at the time of submission. Conclusion: The proposed pipeline achieved the best DS and HD among all participants of the H&N OAR CT and MR segmentation challenge and sets a new SOTA for automated segmentation of H&N OARs.
- Abstract(参考訳): 背景と目的: 深層学習(DL)は、OAR(Organs at Risk)セグメンテーションのために広く研究されてきたが、ほとんどの研究は、CTとMRIの両方を同時に扱うのではなく、単一のモダリティに焦点を当てている。
本研究は,頭頸部癌(H&N)患者のMRIおよびCTによる30個のOARのセグメンテーションのための高性能DLパイプラインを提案する。
材料および方法: H&N OAR CT & MRセグメンテーション課題データセットから得られた30OARのアノテーションとともに,42H&N癌患者のペアCTとMRI-T1画像を用いてセグメンテーションパイプラインを構築した。
無関係領域の伐採後,CTおよびMRIボリュームの非厳格な登録を施行した。
軟部組織と骨解剖の2種類のCT容積をMRI容積に積み重ね, nnU-Netパイプラインへの入力として使用した。
モダリティ・ドロップアウト(Modality Dropout)は、トレーニング中に異なるモダリティからモデルを学習させるために使用された。
分離マスクは,14人の新規患者を対象としたトレーニングモデルを用いて予測した。
Dice Score (DS) と Hausdorff Distance (HD) を各OAR患者に対して算出し, パイプラインの評価を行った。
その結果、DSとHDの合計は0.777+-0.118と3.455+-1.679となり、提出時点ではSOTA(State-of-the-art)が確立した。
結論: 提案パイプラインはH&N OAR CTおよびMRセグメンテーションチャレンジの参加者の中で最高のDSとHDを達成し, H&N OARの自動セグメンテーションのための新しいSOTAを設定した。
関連論文リスト
- RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CTはCT-RATEに基づく大規模3次元胸部CT解釈データセットである。
私たちは、最新の強力なユニバーサルセグメンテーションと大きな言語モデルを活用して、元のデータセットを拡張します。
論文 参考訳(メタデータ) (2024-04-25T17:11:37Z) - Segmentation of Mediastinal Lymph Nodes in CT with Anatomical Priors [2.087440644034646]
胸部リンパ節(LNs)は肺がんや肺炎などの諸疾患により増大する傾向にある。
我々は28の異なる構造の解剖学的先行を生かして縦隔にLNを分節することを提案する。
NIH CT Lymph Nodeデータセットで利用可能な89人の患者のCTボリュームを使用して、3D nnUNetモデルをトレーニングし、LNをセグメンテーションした。
論文 参考訳(メタデータ) (2024-01-11T21:59:42Z) - APIS: A paired CT-MRI dataset for ischemic stroke segmentation challenge [0.0]
APISはNCCTとADCによる急性虚血性脳卒中患者の最初のペアデータセットである。
第20回IEEE International Symposium on Biomedical Imaging 2023で発表された。
すべてのチームが専門的なディープラーニングツールを使用しているにも関わらず、NCCTの虚血性脳卒中セグメンテーションタスクは依然として困難である。
論文 参考訳(メタデータ) (2023-09-26T20:16:07Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
我々は,多系列ニューロオンコロジーMRIデータの集約と処理のための人工知能ベースのソリューションを提案する。
エンド・ツー・エンドのフレームワーク i) アンサンブル分類器を用いてMRIの配列を分類し, i) 再現可能な方法でデータを前処理し, iv) 腫瘍組織サブタイプを規定する。
欠落したシーケンスに対して堅牢であり、専門的なループアプローチを採用しており、セグメンテーションの結果は放射線学者によって手動で洗練される可能性がある。
論文 参考訳(メタデータ) (2022-10-06T18:23:42Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
本研究は腫瘍学的に重要なリンパ節(または不審な癌転移)の検出と分節に焦点を当てた。
我々はOSLNを腫瘍近位・腫瘍遠位分類に分割する分断型決定階層化手法を提案する。
局所的な3D画像パッチから得られた特徴と高次病変特性を組み合わせた新しいグローバルローカルネットワーク(GLNet)を提案する。
論文 参考訳(メタデータ) (2020-05-27T23:12:11Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。