Generative AI for Test Driven Development: Preliminary Results
- URL: http://arxiv.org/abs/2405.10849v1
- Date: Fri, 17 May 2024 15:26:10 GMT
- Title: Generative AI for Test Driven Development: Preliminary Results
- Authors: Moritz Mock, Jorge Melegati, Barbara Russo,
- Abstract summary: Test Driven Development (TDD) is one of the major practices of Extreme Programming.
Generative AI (GenAI) may reduce the extra effort imposed by TDD.
- Score: 2.5385600700122737
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Test Driven Development (TDD) is one of the major practices of Extreme Programming for which incremental testing and refactoring trigger the code development. TDD has limited adoption in the industry, as it requires more code to be developed and experienced developers. Generative AI (GenAI) may reduce the extra effort imposed by TDD. In this work, we introduce an approach to automatize TDD by embracing GenAI either in a collaborative interaction pattern in which developers create tests and supervise the AI generation during each iteration or a fully-automated pattern in which developers only supervise the AI generation at the end of the iterations. We run an exploratory experiment with ChatGPT in which the interaction patterns are compared with the non-AI TDD regarding test and code quality and development speed. Overall, we found that, for our experiment and settings, GenAI can be efficiently used in TDD, but it requires supervision of the quality of the produced code. In some cases, it can even mislead non-expert developers and propose solutions just for the sake of the query.
Related papers
- Code with Me or for Me? How Increasing AI Automation Transforms Developer Workflows [66.1850490474361]
We conduct the first academic study to explore developer interactions with coding agents.<n>We evaluate two leading copilot and agentic coding assistants, GitHub Copilot and OpenHands.<n>Our results show agents have the potential to assist developers in ways that surpass copilots.
arXiv Detail & Related papers (2025-07-10T20:12:54Z) - From Reproduction to Replication: Evaluating Research Agents with Progressive Code Masking [48.90371827091671]
AutoExperiment is a benchmark that evaluates AI agents' ability to implement and run machine learning experiments.<n>We evaluate state-of-the-art agents and find that performance degrades rapidly as $n$ increases.<n>Our findings highlight critical challenges in long-horizon code generation, context retrieval, and autonomous experiment execution.
arXiv Detail & Related papers (2025-06-24T15:39:20Z) - SWE-Flow: Synthesizing Software Engineering Data in a Test-Driven Manner [53.54568352375669]
We introduce **SWE-Flow**, a novel data synthesis framework grounded in Test-Driven Development (TDD)<n>Unlike existing software engineering data that rely on human-submitted issues, **SWE-Flow** automatically infers incremental development steps directly from unit tests.<n>We generated 16,061 training instances and 2,020 test instances from real-world GitHub projects, creating the **SWE-Flow-Eval** benchmark.
arXiv Detail & Related papers (2025-06-10T17:23:33Z) - R&D-Agent: Automating Data-Driven AI Solution Building Through LLM-Powered Automated Research, Development, and Evolution [60.80016554091364]
R&D-Agent is a dual-agent framework for iterative exploration.<n>The Researcher agent uses performance feedback to generate ideas, while the Developer agent refines code based on error feedback.<n>R&D-Agent is evaluated on MLE-Bench and emerges as the top-performing machine learning engineering agent.
arXiv Detail & Related papers (2025-05-20T06:07:00Z) - Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation [69.62857948698436]
Recent advances in large language models (LLMs) have improved their performance on coding benchmarks.
However, improvement is plateauing due to the exhaustion of readily available high-quality data.
We propose Sol-Ver, a self-play solver-verifier framework that jointly improves a single model's code and test generation capacity.
arXiv Detail & Related papers (2025-02-20T18:32:19Z) - Disrupting Test Development with AI Assistants [1.024113475677323]
Generative AI-assisted coding tools like GitHub Copilot, ChatGPT, and Tabnine have significantly transformed software development.
This paper analyzes how these innovations impact productivity and software test development metrics.
arXiv Detail & Related papers (2024-11-04T17:52:40Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - Does Co-Development with AI Assistants Lead to More Maintainable Code? A Registered Report [6.7428644467224]
This study aims to examine the influence of AI assistants on software maintainability.
In Phase 1, developers will add a new feature to a Java project, with or without the aid of an AI assistant.
In Phase 2, a randomized controlled trial, will involve a different set of developers evolving random Phase 1 projects - working without AI assistants.
arXiv Detail & Related papers (2024-08-20T11:48:42Z) - Genetic Auto-prompt Learning for Pre-trained Code Intelligence Language Models [54.58108387797138]
We investigate the effectiveness of prompt learning in code intelligence tasks.
Existing automatic prompt design methods are very limited to code intelligence tasks.
We propose Genetic Auto Prompt (GenAP) which utilizes an elaborate genetic algorithm to automatically design prompts.
arXiv Detail & Related papers (2024-03-20T13:37:00Z) - Test-Driven Development for Code Generation [0.850206009406913]
Large Language Models (LLMs) have demonstrated significant capabilities in generating code snippets directly from problem statements.
This paper investigates if and how Test-Driven Development (TDD) can be incorporated into AI-assisted code-generation processes.
arXiv Detail & Related papers (2024-02-21T04:10:12Z) - PyTester: Deep Reinforcement Learning for Text-to-Testcase Generation [20.441921569948562]
Test-driven development (TDD) mandates writing test cases based on requirements before writing the actual code.
While writing test cases is the centerpiece of TDD, it is time-consuming, expensive, and often shunned by developers.
We introduce PyTester, a Text-to-Testcase generation approach that can automatically generate correct, executable, complete, and effective test cases.
arXiv Detail & Related papers (2024-01-15T10:21:58Z) - Towards a TDD maturity model through an anti-patterns framework [0.0]
This paper proposes a research project that explores the TDD anti-patterns context and what leads practitioners to face them in the software development context.
As a result, we expect to offer a TDD maturity framework to help practitioners in the process of writing code guided by tests.
arXiv Detail & Related papers (2023-07-21T12:30:20Z) - CONCORD: Clone-aware Contrastive Learning for Source Code [64.51161487524436]
Self-supervised pre-training has gained traction for learning generic code representations valuable for many downstream SE tasks.
We argue that it is also essential to factor in how developers code day-to-day for general-purpose representation learning.
In particular, we propose CONCORD, a self-supervised, contrastive learning strategy to place benign clones closer in the representation space while moving deviants further apart.
arXiv Detail & Related papers (2023-06-05T20:39:08Z) - A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to
GPT-5 All You Need? [112.12974778019304]
generative AI (AIGC, a.k.a AI-generated content) has made headlines everywhere because of its ability to analyze and create text, images, and beyond.
In the era of AI transitioning from pure analysis to creation, it is worth noting that ChatGPT, with its most recent language model GPT-4, is just a tool out of numerous AIGC tasks.
This work focuses on the technological development of various AIGC tasks based on their output type, including text, images, videos, 3D content, etc.
arXiv Detail & Related papers (2023-03-21T10:09:47Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Robust Conversational AI with Grounded Text Generation [77.56950706340767]
GTG is a hybrid model which uses a large-scale Transformer neural network as its backbone.
It generates responses grounded in dialog belief state and real-world knowledge for task completion.
arXiv Detail & Related papers (2020-09-07T23:49:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.