Disrupting Test Development with AI Assistants
- URL: http://arxiv.org/abs/2411.02328v1
- Date: Mon, 04 Nov 2024 17:52:40 GMT
- Title: Disrupting Test Development with AI Assistants
- Authors: Vijay Joshi, Iver Band,
- Abstract summary: Generative AI-assisted coding tools like GitHub Copilot, ChatGPT, and Tabnine have significantly transformed software development.
This paper analyzes how these innovations impact productivity and software test development metrics.
- Score: 1.024113475677323
- License:
- Abstract: Recent advancements in large language models, including GPT-4 and its variants, and Generative AI-assisted coding tools like GitHub Copilot, ChatGPT, and Tabnine, have significantly transformed software development. This paper analyzes how these innovations impact productivity and software test development metrics. These tools enable developers to generate complete software programs with minimal human intervention before deployment. However, thorough review and testing by developers are still crucial. Utilizing the Test Pyramid concept, which categorizes tests into unit, integration, and end-to-end tests, we evaluate three popular AI coding assistants by generating and comparing unit tests for opensource modules. Our findings show that AI-generated tests are of equivalent quality to original tests, highlighting differences in usage and results among the tools. This research enhances the understanding and capabilities of AI-assistant tools in automated testing.
Related papers
- Generative Artificial Intelligence-Supported Pentesting: A Comparison between Claude Opus, GPT-4, and Copilot [44.99833362998488]
GenAI can be applied across numerous fields, with particular relevance in cybersecurity.
In this paper, we have analyzed the potential of leading generic-purpose GenAI tools.
Claude Opus, GPT-4 from ChatGPT, and Copilot-in augmenting the penetration testing process as defined by the Penetration Testing Execution Standard (PTES)
arXiv Detail & Related papers (2025-01-12T22:48:37Z) - Commit0: Library Generation from Scratch [77.38414688148006]
Commit0 is a benchmark that challenges AI agents to write libraries from scratch.
Agents are provided with a specification document outlining the library's API as well as a suite of interactive unit tests.
Commit0 also offers an interactive environment where models receive static analysis and execution feedback on the code they generate.
arXiv Detail & Related papers (2024-12-02T18:11:30Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - ASTER: Natural and Multi-language Unit Test Generation with LLMs [6.259245181881262]
We describe a generic pipeline that incorporates static analysis to guide LLMs in generating compilable and high-coverage test cases.
We conduct an empirical study to assess the quality of the generated tests in terms of code coverage and test naturalness.
arXiv Detail & Related papers (2024-09-04T21:46:18Z) - The Role of Artificial Intelligence and Machine Learning in Software Testing [0.14896196009851972]
Artificial Intelligence (AI) and Machine Learning (ML) have significantly impacted various industries.
Software testing, a crucial part of the software development lifecycle (SDLC), ensures the quality and reliability of software products.
This paper explores the role of AI and ML in software testing by reviewing existing literature, analyzing current tools and techniques, and presenting case studies.
arXiv Detail & Related papers (2024-09-04T13:25:13Z) - AI-powered test automation tools: A systematic review and empirical evaluation [1.3490988186255937]
We investigate the features provided by existing AI-based test automation tools.
We empirically evaluate how the AI features can be helpful for effectiveness and efficiency of testing.
We also study the limitations of the AI features in AI-based test tools.
arXiv Detail & Related papers (2024-08-31T10:10:45Z) - Leveraging Large Language Models for Enhancing the Understandability of Generated Unit Tests [4.574205608859157]
We introduce UTGen, which combines search-based software testing and large language models to enhance the understandability of automatically generated test cases.
We observe that participants working on assignments with UTGen test cases fix up to 33% more bugs and use up to 20% less time when compared to baseline test cases.
arXiv Detail & Related papers (2024-08-21T15:35:34Z) - A System for Automated Unit Test Generation Using Large Language Models and Assessment of Generated Test Suites [1.4563527353943984]
Large Language Models (LLMs) have been applied to various aspects of software development.
We present AgoneTest: an automated system for generating test suites for Java projects.
arXiv Detail & Related papers (2024-08-14T23:02:16Z) - A Multi-Year Grey Literature Review on AI-assisted Test Automation [46.97326049485643]
Test Automation (TA) techniques are crucial for quality assurance in software engineering but face limitations.
Given the prevalent usage of AI in industry, sources of truth are held in grey literature as well as the minds of professionals.
This study surveys grey literature to explore how AI is adopted in TA, focusing on the problems it solves, its solutions, and the available tools.
arXiv Detail & Related papers (2024-08-12T15:26:36Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
We describe a new concept for reproducible robotics research that integrates development and benchmarking.
One of the central components of this setup is the Duckietown Autolab, a standardized setup that is itself relatively low-cost and reproducible.
We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.
arXiv Detail & Related papers (2020-09-09T15:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.