BraTS-Path Challenge: Assessing Heterogeneous Histopathologic Brain Tumor Sub-regions
- URL: http://arxiv.org/abs/2405.10871v1
- Date: Fri, 17 May 2024 16:02:21 GMT
- Title: BraTS-Path Challenge: Assessing Heterogeneous Histopathologic Brain Tumor Sub-regions
- Authors: Spyridon Bakas, Siddhesh P. Thakur, Shahriar Faghani, Mana Moassefi, Ujjwal Baid, Verena Chung, Sarthak Pati, Shubham Innani, Bhakti Baheti, Jake Albrecht, Alexandros Karargyris, Hasan Kassem, MacLean P. Nasrallah, Jared T. Ahrendsen, Valeria Barresi, Maria A. Gubbiotti, Giselle Y. López, Calixto-Hope G. Lucas, Michael L. Miller, Lee A. D. Cooper, Jason T. Huse, William R. Bell,
- Abstract summary: Glioblastoma is the most common primary adult brain tumor, with a grim prognosis.
The BraTS-Path challenge is to provide a systematically prepared comprehensive dataset and a benchmarking environment to develop and fairly compare deep-learning models.
- Score: 29.940537460789688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Glioblastoma is the most common primary adult brain tumor, with a grim prognosis - median survival of 12-18 months following treatment, and 4 months otherwise. Glioblastoma is widely infiltrative in the cerebral hemispheres and well-defined by heterogeneous molecular and micro-environmental histopathologic profiles, which pose a major obstacle in treatment. Correctly diagnosing these tumors and assessing their heterogeneity is crucial for choosing the precise treatment and potentially enhancing patient survival rates. In the gold-standard histopathology-based approach to tumor diagnosis, detecting various morpho-pathological features of distinct histology throughout digitized tissue sections is crucial. Such "features" include the presence of cellular tumor, geographic necrosis, pseudopalisading necrosis, areas abundant in microvascular proliferation, infiltration into the cortex, wide extension in subcortical white matter, leptomeningeal infiltration, regions dense with macrophages, and the presence of perivascular or scattered lymphocytes. With these features in mind and building upon the main aim of the BraTS Cluster of Challenges https://www.synapse.org/brats2024, the goal of the BraTS-Path challenge is to provide a systematically prepared comprehensive dataset and a benchmarking environment to develop and fairly compare deep-learning models capable of identifying tumor sub-regions of distinct histologic profile. These models aim to further our understanding of the disease and assist in the diagnosis and grading of conditions in a consistent manner.
Related papers
- Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - Detecting Histologic & Clinical Glioblastoma Patterns of Prognostic
Relevance [6.281092892485014]
Glioblastoma is the most common and aggressive malignant adult tumor of the central nervous system.
Since adopting the current standard-of-care treatment 18 years ago, no substantial prognostic improvement has been noticed.
Here, we focus on identifying prognostically relevant characteristics from H&E stained WSI & clinical data relating to OS.
arXiv Detail & Related papers (2023-02-01T18:56:09Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides.
Cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands.
This paper proposes an automated workflow that follows pathologists' textitmodus operandi, isolating and classifying multi-scale patches of individual glands.
arXiv Detail & Related papers (2022-09-27T14:08:19Z) - A Precision Diagnostic Framework of Renal Cell Carcinoma on Whole-Slide
Images using Deep Learning [4.823436898659051]
A deep convolutional neural network (InceptionV3) was trained on the high-quality annotated dataset of The Cancer Genome Atlas.
Our framework can help pathologists in the detection of cancer region and classification of subtypes and grades, which could be applied to any cancer type.
arXiv Detail & Related papers (2021-10-26T12:53:25Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - An Attention-based Weakly Supervised framework for Spitzoid Melanocytic
Lesion Diagnosis in WSI [1.0948946179065253]
Melanoma is an aggressive neoplasm responsible for the majority of deaths from skin cancer.
The gold standard for its diagnosis and prognosis is the analysis of skin biopsies.
We propose a novel end-to-end weakly-supervised deep learning model, based on inductive transfer learning with an improved convolutional neural network (CNN)
The framework is composed of a source model in charge of finding the tumor patch-level patterns, and a target model focuses on the specific diagnosis of a biopsy.
arXiv Detail & Related papers (2021-04-20T10:18:57Z) - Radiomic Deformation and Textural Heterogeneity (R-DepTH) Descriptor to
characterize Tumor Field Effect: Application to Survival Prediction in
Glioblastoma [2.1916334019121537]
The concept of tumor field effect implies that cancer is a systemic disease with its impact way beyond the visible tumor confines.
We present an integrated MRI-based descriptor, radiomic-Deformation and Textural Heterogeneity (r-DepTH)
This descriptor comprises measurements of the subtle perturbations in tissue deformations throughout the surrounding normal parenchyma due to mass effect.
arXiv Detail & Related papers (2021-03-12T17:38:54Z) - Expectation-Maximization Regularized Deep Learning for Weakly Supervised
Tumor Segmentation for Glioblastoma [8.24450401153384]
We present an Expectation-Maximization (EM) Regularized Deep Learning (EMReDL) model for the weakly supervised tumor segmentation.
The proposed framework was tailored to glioblastoma, a type of malignant tumor characterized by its diffuse infiltration into the surrounding brain tissue.
arXiv Detail & Related papers (2021-01-21T18:14:43Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.