One registration is worth two segmentations
- URL: http://arxiv.org/abs/2405.10879v1
- Date: Fri, 17 May 2024 16:14:32 GMT
- Title: One registration is worth two segmentations
- Authors: Shiqi Huang, Tingfa Xu, Ziyi Shen, Shaheer Ullah Saeed, Wen Yan, Dean Barratt, Yipeng Hu,
- Abstract summary: The goal of image registration is to establish spatial correspondence between two or more images.
We propose an alternative but more intuitive correspondence representation: a set of corresponding regions-of-interest (ROI) pairs.
We experimentally show that the proposed SAMReg is capable of segmenting and matching multiple ROI pairs.
- Score: 12.163299991979574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of image registration is to establish spatial correspondence between two or more images, traditionally through dense displacement fields (DDFs) or parametric transformations (e.g., rigid, affine, and splines). Rethinking the existing paradigms of achieving alignment via spatial transformations, we uncover an alternative but more intuitive correspondence representation: a set of corresponding regions-of-interest (ROI) pairs, which we demonstrate to have sufficient representational capability as other correspondence representation methods.Further, it is neither necessary nor sufficient for these ROIs to hold specific anatomical or semantic significance. In turn, we formulate image registration as searching for the same set of corresponding ROIs from both moving and fixed images - in other words, two multi-class segmentation tasks on a pair of images. For a general-purpose and practical implementation, we integrate the segment anything model (SAM) into our proposed algorithms, resulting in a SAM-enabled registration (SAMReg) that does not require any training data, gradient-based fine-tuning or engineered prompts. We experimentally show that the proposed SAMReg is capable of segmenting and matching multiple ROI pairs, which establish sufficiently accurate correspondences, in three clinical applications of registering prostate MR, cardiac MR and abdominal CT images. Based on metrics including Dice and target registration errors on anatomical structures, the proposed registration outperforms both intensity-based iterative algorithms and DDF-predicting learning-based networks, even yielding competitive performance with weakly-supervised registration which requires fully-segmented training data.
Related papers
- SAMReg: SAM-enabled Image Registration with ROI-based Correspondence [12.163299991979574]
This paper describes a new spatial correspondence representation based on paired regions-of-interest (ROIs) for medical image registration.
We develop a new registration algorithm SAMReg, which does not require any training (or training data), gradient-based fine-tuning or prompt engineering.
The proposed methods outperform both intensity-based iterative algorithms and DDF-predicting learning-based networks across tested metrics.
arXiv Detail & Related papers (2024-10-17T23:23:48Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Improving Misaligned Multi-modality Image Fusion with One-stage
Progressive Dense Registration [67.23451452670282]
Misalignments between multi-modality images pose challenges in image fusion.
We propose a Cross-modality Multi-scale Progressive Dense Registration scheme.
This scheme accomplishes the coarse-to-fine registration exclusively using a one-stage optimization.
arXiv Detail & Related papers (2023-08-22T03:46:24Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
Most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain.
We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields.
A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images.
We evaluate our method on the task of intra-subject-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences.
arXiv Detail & Related papers (2022-11-24T23:45:01Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Dual-Flow Transformation Network for Deformable Image Registration with
Region Consistency Constraint [95.30864269428808]
Current deep learning (DL)-based image registration approaches learn the spatial transformation from one image to another by leveraging a convolutional neural network.
We present a novel dual-flow transformation network with region consistency constraint which maximizes the similarity of ROIs within a pair of images.
Experiments on four public 3D MRI datasets show that the proposed method achieves the best registration performance in accuracy and generalization.
arXiv Detail & Related papers (2021-12-04T05:30:44Z) - A Learning Framework for Diffeomorphic Image Registration based on
Quasi-conformal Geometry [1.2891210250935146]
We propose the quasi-conformal registration network (QCRegNet), an unsupervised learning framework, to obtain diffeomorphic 2D image registrations.
QCRegNet consists of the estimator network and the Beltrami solver network (BSNet)
Results show that the registration accuracy is comparable to state-of-the-art methods and diffeomorphism is to a great extent guaranteed.
arXiv Detail & Related papers (2021-10-20T14:23:24Z) - MvMM-RegNet: A new image registration framework based on multivariate
mixture model and neural network estimation [14.36896617430302]
We propose a new image registration framework based on generative model (MvMM) and neural network estimation.
A generative model consolidating both appearance and anatomical information is established to derive a novel loss function capable of implementing groupwise registration.
We highlight the versatility of the proposed framework for various applications on multimodal cardiac images.
arXiv Detail & Related papers (2020-06-28T11:19:15Z) - CoMIR: Contrastive Multimodal Image Representation for Registration [4.543268895439618]
We propose contrastive coding to learn shared, dense image representations, referred to as CoMIRs (Contrastive Multimodal Image Representations)
CoMIRs enable the registration of multimodal images where existing registration methods often fail due to a lack of sufficiently similar image structures.
arXiv Detail & Related papers (2020-06-11T10:51:33Z) - JSSR: A Joint Synthesis, Segmentation, and Registration System for 3D
Multi-Modal Image Alignment of Large-scale Pathological CT Scans [27.180136688977512]
We propose a novel multi-task learning system, JSSR, based on an end-to-end 3D convolutional neural network.
The system is optimized to satisfy the implicit constraints between different tasks in an unsupervised manner.
It consistently outperforms conventional state-of-the-art multi-modal registration methods.
arXiv Detail & Related papers (2020-05-25T16:30:02Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.