論文の概要: A Versatile Framework for Analyzing Galaxy Image Data by Implanting Human-in-the-loop on a Large Vision Model
- arxiv url: http://arxiv.org/abs/2405.10890v1
- Date: Fri, 17 May 2024 16:29:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 15:34:03.810811
- Title: A Versatile Framework for Analyzing Galaxy Image Data by Implanting Human-in-the-loop on a Large Vision Model
- Title(参考訳): 大型ビジョンモデルに人体をループに埋め込むことによる銀河画像解析のためのVersatile Framework
- Authors: Mingxiang Fu, Yu Song, Jiameng Lv, Liang Cao, Peng Jia, Nan Li, Xiangru Li, Jifeng Liu, A-Li Luo, Bo Qiu, Shiyin Shen, Liangping Tu, Lili Wang, Shoulin Wei, Haifeng Yang, Zhenping Yi, Zhiqiang Zou,
- Abstract要約: 大型ビジョンモデル(LVM)と下流タスク(DST)に基づく銀河画像の一般解析のためのフレームワークを提案する。
銀河画像の低信号-雑音比を考えると、我々は大きな視覚モデルにHuman-in-the-loop (HITL)モジュールを組み込んだ。
1000のデータポイントでトレーニングされたオブジェクト検出では、DSTが96.7%、ResNet50とMask R-CNNが93.1%である。
- 参考スコア(独自算出の注目度): 14.609681101463334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential growth of astronomical datasets provides an unprecedented opportunity for humans to gain insight into the Universe. However, effectively analyzing this vast amount of data poses a significant challenge. Astronomers are turning to deep learning techniques to address this, but the methods are limited by their specific training sets, leading to considerable duplicate workloads too. Hence, as an example to present how to overcome the issue, we built a framework for general analysis of galaxy images, based on a large vision model (LVM) plus downstream tasks (DST), including galaxy morphological classification, image restoration, object detection, parameter extraction, and more. Considering the low signal-to-noise ratio of galaxy images and the imbalanced distribution of galaxy categories, we have incorporated a Human-in-the-loop (HITL) module into our large vision model, which leverages human knowledge to enhance the reliability and interpretability of processing galaxy images interactively. The proposed framework exhibits notable few-shot learning capabilities and versatile adaptability to all the abovementioned tasks on galaxy images in the DESI legacy imaging surveys. Expressly, for object detection, trained by 1000 data points, our DST upon the LVM achieves an accuracy of 96.7%, while ResNet50 plus Mask R-CNN gives an accuracy of 93.1%; for morphology classification, to obtain AUC ~0.9, LVM plus DST and HITL only requests 1/50 training sets compared to ResNet18. Expectedly, multimodal data can be integrated similarly, which opens up possibilities for conducting joint analyses with datasets spanning diverse domains in the era of multi-message astronomy.
- Abstract(参考訳): 天文学的なデータセットの指数的な成長は、人類が宇宙に関する洞察を得る前例のない機会となる。
しかし、この膨大なデータを効果的に分析することは大きな課題となる。
天文学者はこれに対処するために深層学習技術に目を向けていますが、その方法は特定のトレーニングセットによって制限されています。
そこで本研究では,銀河形態分類,画像復元,物体検出,パラメータ抽出などを含む大規模視覚モデル (LVM) と下流タスク (DST) に基づく,銀河画像の一般解析のためのフレームワークを構築した。
銀河画像の低信号-雑音比と銀河カテゴリの不均衡分布を考慮し,人間の知識を生かしたHuman-in-the-loop (HITL)モジュールを大視的モデルに組み込んだ。
提案フレームワークは, DESIレガシイメージングサーベイにおいて, 上記の銀河画像上の全てのタスクに対して, 顕著な数発の学習能力と汎用的な適応性を示す。
具体的には、1000のデータポイントでトレーニングされたオブジェクト検出では、LVM上のDSTは96.7%、ResNet50とMask R-CNNは93.1%、モルフォロジー分類ではAUC ~0.9、LVMとDSTとHITLはResNet18と比較して1/50のトレーニングセットしか要求しない。
期待されているのは、マルチモーダルデータを同様に統合することで、マルチメッセージ天文学の時代において、多様な領域にまたがるデータセットと共同分析を行う可能性を高めることである。
関連論文リスト
- Preliminary Report on Mantis Shrimp: a Multi-Survey Computer Vision
Photometric Redshift Model [0.431625343223275]
光度赤偏移推定は天文学の確立されたサブフィールドである。
Mantis Shrimpは、超紫外(GALEX)、光学(PanSTARRS)、赤外線(UnWISE)画像を融合する、測光赤方偏移推定のためのコンピュータビジョンモデルである。
論文 参考訳(メタデータ) (2024-02-05T21:44:19Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Discovering Galaxy Features via Dataset Distillation [7.121183597915665]
多くのアプリケーションにおいて、ニューラルネット(NN)は、人間の能力以上の分類性能を持つ。
ここでは、このアイデアを銀河分類の非常に難しい課題に適用する。
ニューラルネットワークのレンズを通して原型銀河形態を要約し視覚化する新しい方法を提案する。
論文 参考訳(メタデータ) (2023-11-29T12:39:31Z) - Spiral-Elliptical automated galaxy morphology classification from
telescope images [0.40792653193642503]
我々は、望遠鏡の銀河画像から効率的に抽出できる2つの新しい銀河形態統計、降下平均と降下分散を開発した。
我々は,Sloan Digital Sky Surveyの銀河画像データを用いて,提案した画像統計の有効性能を実証した。
論文 参考訳(メタデータ) (2023-10-10T22:36:52Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
与えられた画像の5つの統計的測度から算出した画像リアリズムスコア(IRS)と呼ばれるメトリクスを提案する。
IRSは、与えられた画像を実または偽のものとして分類する手段として容易に利用できる。
我々は,安定拡散モデル (SDM) , Dalle2, Midjourney, BigGAN による偽画像の検出に成功して,提案したIRSのモデルおよびデータに依存しない性質を実験的に確立した。
このデータセットは、高品質の4つのモデルによって生成される100のクラスに対して1,000のサンプルを提供します。
論文 参考訳(メタデータ) (2023-09-26T08:32:55Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
視覚認識のためのマスク付き画像モデリング(MIM)手法のスケーリング能力に関する実証的研究を行った。
具体的には、Webで収集したCoyo-700Mデータセットを利用する。
我々のゴールは、データとモデルのサイズの異なるスケールでダウンストリームタスクのパフォーマンスがどのように変化するかを調べることです。
論文 参考訳(メタデータ) (2023-05-24T15:33:46Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Advancing Plain Vision Transformer Towards Remote Sensing Foundation
Model [97.9548609175831]
約1億のパラメータを持つプレーンビジョントランスフォーマーを利用して、リモートセンシングタスク用にカスタマイズされた大規模なビジョンモデルを提案する。
具体的には、RS画像における大きな画像サイズと様々な向きのオブジェクトを扱うために、回転する様々なウィンドウアテンションを提案する。
検出タスクの実験は、DOTA-V1.0データセット上で81.16%のmAPを達成したすべての最先端モデルよりも、我々のモデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-08-08T09:08:40Z) - Realistic galaxy image simulation via score-based generative models [0.0]
本研究では,銀河の観測を模倣した現実的かつ偽のイメージを生成するために,スコアベースの生成モデルが利用できることを示す。
主観的には、生成された銀河は実際のデータセットのサンプルと比較すると非常に現実的である。
論文 参考訳(メタデータ) (2021-11-02T16:27:08Z) - Morphological classification of astronomical images with limited
labelling [0.0]
本稿では, 対向オートエンコーダ(AAE)モデルの能動的学習に基づく, 銀河形態分類の効果的な半教師付き手法を提案する。
2値分類問題(Galaxy Zoo 2決定木のトップレベル問題)では、わずか0.86万のマークアップアクションで、テスト部分で93.1%の精度を達成した。
マークアップ精度が95.5%のベストモデルです。
論文 参考訳(メタデータ) (2021-04-27T19:26:27Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
本研究では,低地光度銀河と人工物とを分離する問題に対する畳み込みニューラルネットワーク(CNN)の利用について検討する。
我々は、CNNが低地光度宇宙の研究に非常に有望な道を提供することを示した。
論文 参考訳(メタデータ) (2020-11-24T22:51:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。