論文の概要: Prioritising GitHub Priority Labels
- arxiv url: http://arxiv.org/abs/2405.10891v1
- Date: Fri, 17 May 2024 16:30:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 15:34:03.808165
- Title: Prioritising GitHub Priority Labels
- Title(参考訳): GitHubプライオリティラベルの優先順位付け
- Authors: James Caddy, Christoph Treude,
- Abstract要約: この出版物は、優先順位に関する812のラベルを手動で分類したユニークなデータセットを導入し、ロー、ミディアム、ハイプライオリティに分類される。
このデータセットをどのように利用できるかを示すために、GitHubコントリビュータ向けのツールを作成しました。
- 参考スコア(独自算出の注目度): 8.65285948382426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Communities on GitHub often use issue labels as a way of triaging issues by assigning them priority ratings based on how urgently they should be addressed. The labels used are determined by the repository contributors and not standardised by GitHub. This makes it difficult for priority-related reasoning across repositories for both researchers and contributors. Previous work shows interest in how issues are labelled and what the consequences for those labels are. For instance, some previous work has used clustering models and natural language processing to categorise labels without a particular emphasis on priority. With this publication, we introduce a unique data set of 812 manually categorised labels pertaining to priority; normalised and ranked as low-, medium-, or high-priority. To provide an example of how this data set could be used, we have created a tool for GitHub contributors that will create a list of the highest priority issues from the repositories to which they contribute. We have released the data set and the tool for anyone to use on Zenodo because we hope that this will help the open source community address high-priority issues more effectively and inspire other uses.
- Abstract(参考訳): GitHubのコミュニティは、緊急に対処すべきかどうかに基づいて、優先順位付けを割り当てることで、イシューをトリアージする手段としてイシューラベルを使用することが多い。
使用するラベルはリポジトリのコントリビュータによって決定され、GitHubでは標準化されていない。
これにより、研究者とコントリビュータの両方にとって、リポジトリ間の優先度関連推論が困難になる。
以前の研究は、どのようにラベル付けされたか、そしてそれらのラベルがどのような結果をもたらすかに興味を示している。
例えば、いくつかの以前の研究では、クラスタリングモデルと自然言語処理を使用してラベルを分類し、特に優先順位に重点を置いている。
本発表では,優先度に関するラベルを手作業で分類した812のユニークなデータセットを導入する。
このデータセットをどのように利用できるかを示すために、GitHubコントリビュータ向けのツールを作成しました。
当社はデータセットとツールをZenodoで使用するためにリリースしました。オープンソースコミュニティが高優先度の問題により効果的に対処し、他の用途を刺激するのに役立つことを期待しています。
関連論文リスト
- GeT: Generative Target Structure Debiasing for Domain Adaptation [67.17025068995835]
ドメイン適応(DA)は、ドメインシフトの下で、完全にラベル付けされたソースからほとんどラベル付けされていない、または完全にラベル付けされていないターゲットに知識を転送することを目的としています。
近年,擬似ラベリングを利用した半教師付き学習(SSL)技術がDAでますます普及している。
本稿では,高品質な擬似ラベルを用いた非バイアス対象埋め込み分布を学習するGeTを提案する。
論文 参考訳(メタデータ) (2023-08-20T08:52:43Z) - Making Binary Classification from Multiple Unlabeled Datasets Almost
Free of Supervision [128.6645627461981]
本稿では,複数ラベル付きデータセットからの2値分類という新たな問題設定を提案する。
MU-OPPOでは、ラベル付けされていないすべてのデータセットのクラスプリエントは不要です。
このフレームワークは,クラス前の推定誤差が小さくなり,バイナリ分類の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-06-12T11:33:46Z) - Tag that issue: Applying API-domain labels in issue tracking systems [20.701637107734996]
完了に必要なスキルをラベル付けすることで、コントリビュータがオープンソースプロジェクトのタスクを選択するのに役立ちます。
ハイレベルなAPIカテゴリである“APIドメイン”と呼ばれる問題の自動ラベリングの実現可能性と妥当性について検討する。
以上の結果から, 課題選択に有用なAPIドメインラベル, (ii) ラベルの精度は84%, 平均で78.6%, (iii) 予測結果が71.3%, 52.5%まで到達した。
論文 参考訳(メタデータ) (2023-04-06T05:49:46Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
ディープニューラルネットワークは、大規模ラベル付きデータセットの助けを借りて、幅広いタスクで顕著なパフォーマンスを達成する。
ラベル付きデータの要求を軽減するため、ラベル付けされていないデータに擬似ラベルを付けることにより、学術と産業の両方で自己学習が広く使われている。
疑似ラベルの生成と利用を2つの独立した頭文字で分離するデバイアスドを提案する。
論文 参考訳(メタデータ) (2022-02-15T02:14:33Z) - Automatic Issue Classifier: A Transfer Learning Framework for
Classifying Issue Reports [0.0]
私たちはRoBERTaと呼ばれる既製のニューラルネットワークを使って、問題を分類しています。
本稿では,問題レポートを複数ラベル設定で分類するアプローチを提案する。我々はRoBERTaと呼ばれる市販のニューラルネットワークを用いて,問題レポートの分類を行う。
論文 参考訳(メタデータ) (2022-02-12T21:43:08Z) - Learning with Noisy Labels by Targeted Relabeling [52.0329205268734]
クラウドソーシングプラットフォームは、ディープニューラルネットワークをトレーニングするためのデータセット収集によく使用される。
本稿では,少数のアノテーションを予約して,高い確率でラベル付け可能なエラーを明示的に緩和する手法を提案する。
論文 参考訳(メタデータ) (2021-10-15T20:37:29Z) - Predicting Issue Types on GitHub [8.791809365994682]
Ticket Taggerは、機械学習技術による課題のタイトルと説明を分析するGitHubアプリである。
私たちは、約30,000のGitHubイシューに対して、ツールの予測パフォーマンスを実証的に評価しました。
論文 参考訳(メタデータ) (2021-07-21T08:14:48Z) - Can I Solve It? Identifying APIs Required to Complete OSS Task [16.13269535068818]
タスク完了に必要なAPIのドメインに対するラベリング問題の実現可能性と関連性を検討する。
問題の記述とプロジェクト履歴を利用して予測モデルを構築し,精度を最大82%まで向上させ,最大97.8%をリコールした。
私たちの結果は、問題を自動的にラベル付けするツールの作成を刺激し、開発者がスキルに合致するタスクを見つけるのに役立ちます。
論文 参考訳(メタデータ) (2021-03-23T16:16:09Z) - LabelGit: A Dataset for Software Repositories Classification using
Attributed Dependency Graphs [11.523471275501857]
LabelGitと呼ばれるGitHubプロジェクトの新しいデータセットを作成します。
私たちのデータセットは、依存関係グラフや識別子からのソースコードニューラル表現など、ソースコードからの直接的な情報を使用します。
プロキシに頼らず、ソースコード全体を分類するために使用するソリューションの開発を支援することを願っています。
論文 参考訳(メタデータ) (2021-03-16T07:28:58Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
本稿では,ラベルとラベルの依存関係を共同で抽出する自己アテンションに基づく変分エンコーダモデルを提案する。
したがって、ラベルラベルとラベル機能の両方の依存関係を保ちながら、すべてのラベルを並列に予測することができる。
論文 参考訳(メタデータ) (2020-12-03T05:41:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。