Classification of colorectal primer carcinoma from normal colon with mid-infrared spectra
- URL: http://arxiv.org/abs/2405.10950v1
- Date: Fri, 22 Mar 2024 16:16:03 GMT
- Title: Classification of colorectal primer carcinoma from normal colon with mid-infrared spectra
- Authors: B. Borkovits, E. Kontsek, A. Pesti, P. Gordon, S. Gergely, I. Csabai, A. Kiss, P. Pollner,
- Abstract summary: We used formalin-fixed paraffin-embedded (FFPE) tissue samples to measure thousands of spectra per tissue core.
For classification, we used the random forest, a support vector machine, XGBoost, and linear discriminant analysis methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this project, we used formalin-fixed paraffin-embedded (FFPE) tissue samples to measure thousands of spectra per tissue core with Fourier transform mid-infrared spectroscopy using an FT-IR imaging system. These cores varied between normal colon (NC) and colorectal primer carcinoma (CRC) tissues. We created a database to manage all the multivariate data obtained from the measurements. Then, we applied classifier algorithms to identify the tissue based on its yielded spectra. For classification, we used the random forest, a support vector machine, XGBoost, and linear discriminant analysis methods, as well as three deep neural networks. We compared two data manipulation techniques using these models and then applied filtering. In the end, we compared model performances via the sum of ranking differences (SRD).
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Rapid hyperspectral photothermal mid-infrared spectroscopic imaging from
sparse data for gynecologic cancer tissue subtyping [3.550171634694342]
Mid-infrared (MIR) hyperspectral photothermal imaging is a label-free, biochemically quantitative technology.
This work presents a novel approach to MIR photothermal imaging that enhances its speed by an order of magnitude.
arXiv Detail & Related papers (2024-02-28T00:57:35Z) - Tissue Segmentation of Thick-Slice Fetal Brain MR Scans with Guidance
from High-Quality Isotropic Volumes [52.242103848335354]
We propose a novel Cycle-Consistent Domain Adaptation Network (C2DA-Net) to efficiently transfer the knowledge learned from high-quality isotropic volumes for accurate tissue segmentation of thick-slice scans.
Our C2DA-Net can fully utilize a small set of annotated isotropic volumes to guide tissue segmentation on unannotated thick-slice scans.
arXiv Detail & Related papers (2023-08-13T12:51:15Z) - Cross-modulated Few-shot Image Generation for Colorectal Tissue
Classification [58.147396879490124]
Our few-shot generation method, named XM-GAN, takes one base and a pair of reference tissue images as input and generates high-quality yet diverse images.
To the best of our knowledge, we are the first to investigate few-shot generation in colorectal tissue images.
arXiv Detail & Related papers (2023-04-04T17:50:30Z) - Deep Coding Patterns Design for Compressive Near-Infrared Spectral
Classification [80.93625278357229]
spectral classification can be performed directly in the compressive domain, considering the amount of spectral information embedded in the measurements.
This work proposes an end-to-end approach to jointly design the coding patterns used in CSI and the network parameters to perform spectral classification directly from the embedded near-infrared compressive measurements.
arXiv Detail & Related papers (2022-05-27T15:55:53Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Sk-Unet Model with Fourier Domain for Mitosis Detection [7.237569333193943]
Mitotic count is the most important morphological feature of breast cancer grading.
Many deep learning-based methods have been proposed but suffer from domain shift.
In this work, we construct a Fourier-based segmentation model for mitosis detection to address the problem.
arXiv Detail & Related papers (2021-09-01T17:10:39Z) - Cross-Spectral Periocular Recognition with Conditional Adversarial
Networks [59.17685450892182]
We propose Conditional Generative Adversarial Networks, trained to con-vert periocular images between visible and near-infrared spectra.
We obtain a cross-spectral periocular performance of EER=1%, and GAR>99% @ FAR=1%, which is comparable to the state-of-the-art with the PolyU database.
arXiv Detail & Related papers (2020-08-26T15:02:04Z) - A Comparative study of Artificial Neural Networks Using Reinforcement
learning and Multidimensional Bayesian Classification Using Parzen Density
Estimation for Identification of GC-EIMS Spectra of Partially Methylated
Alditol Acetates [0.304585143845864]
This study reports the development of a pattern recognition search engine for a World Wide Web-based database of gas chromatography-electron impact mass spectra (GC-EIMS) of partially methylated Alditol acetates (PMAAs)
The developed system is implemented on the world wide web, and is intended to identify PMAAs using submitted spectra of these molecules recorded on any GC-EIMS instrument.
arXiv Detail & Related papers (2020-07-31T17:54:51Z) - Deep Neural Networks for the Correction of Mie Scattering in
Fourier-Transformed Infrared Spectra of Biological Samples [0.0]
We propose an approach to approximate this complex preprocessing function using deep neural networks.
Our proposed method overcomes the trade-off between time and the corrected spectrum being biased towards an artificial reference spectrum.
arXiv Detail & Related papers (2020-02-18T16:07:07Z) - Spectrum Translation for Cross-Spectral Ocular Matching [59.17685450892182]
Cross-spectral verification remains a big issue in biometrics, especially for the ocular area.
We investigate the use of Conditional Adversarial Networks for spectrum translation between near infra-red and visual light images for ocular biometrics.
arXiv Detail & Related papers (2020-02-14T19:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.