論文の概要: Frugal Algorithm Selection
- arxiv url: http://arxiv.org/abs/2405.11059v1
- Date: Fri, 17 May 2024 19:23:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:36:45.754327
- Title: Frugal Algorithm Selection
- Title(参考訳): フルーガーアルゴリズムの選択
- Authors: Erdem Kuş, Özgür Akgün, Nguyen Dang, Ian Miguel,
- Abstract要約: 問題のすべてのインスタンスにうまく機能するアルゴリズムは存在しない。
本研究では、トレーニング対象のトレーニングインスタンスのサブセットを選択することで、このコストを削減する方法について検討する。
我々は,この問題を3つの方法でアプローチする: 能動的学習を用いて予測の不確実性に基づいて決定し, アルゴリズム予測器をタイムアウト予測器で拡張し, 徐々に増加するタイムアウトを用いてトレーニングデータを収集する。
- 参考スコア(独自算出の注目度): 1.079960007119637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When solving decision and optimisation problems, many competing algorithms (model and solver choices) have complementary strengths. Typically, there is no single algorithm that works well for all instances of a problem. Automated algorithm selection has been shown to work very well for choosing a suitable algorithm for a given instance. However, the cost of training can be prohibitively large due to running candidate algorithms on a representative set of training instances. In this work, we explore reducing this cost by choosing a subset of the training instances on which to train. We approach this problem in three ways: using active learning to decide based on prediction uncertainty, augmenting the algorithm predictors with a timeout predictor, and collecting training data using a progressively increasing timeout. We evaluate combinations of these approaches on six datasets from ASLib and present the reduction in labelling cost achieved by each option.
- Abstract(参考訳): 決定と最適化の問題を解決するとき、多くの競合するアルゴリズム(モデルとソルバの選択)は相補的な強みを持つ。
通常、問題のすべてのインスタンスでうまく機能する単一のアルゴリズムは存在しない。
自動アルゴリズム選択は、与えられたインスタンスに適したアルゴリズムを選択するのに非常に適していることが示されている。
しかし、トレーニングインスタンスの代表セット上で候補アルゴリズムを実行するため、トレーニングのコストは違法に大きくなる可能性がある。
本研究では、トレーニング対象のトレーニングインスタンスのサブセットを選択することで、このコストを削減する方法について検討する。
我々は,この問題を3つの方法でアプローチする: 能動的学習を用いて予測の不確実性に基づいて決定し, アルゴリズム予測器をタイムアウト予測器で拡張し, 徐々に増加するタイムアウトを用いてトレーニングデータを収集する。
提案手法をASLibの6つのデータセットに組み合わせて評価し,各オプションで達成したラベル付けコストの削減について述べる。
関連論文リスト
- Meta-Learning from Learning Curves for Budget-Limited Algorithm Selection [11.409496019407067]
予算制限のシナリオでは、アルゴリズム候補を慎重に選択し、それを訓練するための予算を割り当てることが不可欠である。
本稿では,エージェントが十分に訓練されるまで待たずに,最も有望なアルゴリズムを学習する過程において,エージェントが選択しなければならない新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-10T08:09:58Z) - Sample Complexity of Algorithm Selection Using Neural Networks and Its Applications to Branch-and-Cut [1.4624458429745086]
本研究は,最適な性能を持つ1つのアルゴリズムを選択するのではなく,インスタンスに基づいてアルゴリズムを選択することが可能となるような設定を考慮し,最近の研究を基礎にしている。
特に、代表的なインスタンスのサンプルが与えられた場合、問題のインスタンスをそのインスタンスの最も適切なアルゴリズムにマッピングするニューラルネットワークを学習する。
言い換えれば、ニューラルネットワークは混合整数最適化インスタンスを入力として取り、そのインスタンスの小さな分岐とカットツリーをもたらす決定を出力する。
論文 参考訳(メタデータ) (2024-02-04T03:03:27Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Combining K-means type algorithms with Hill Climbing for Joint
Stratification and Sample Allocation Designs [0.0]
これは、基本層のすべての可能な成層集合から最適成層を探索するサンプル問題である。
それぞれのソリューションのコストを評価するのに 費用がかかります
上記のアルゴリズムと最近の3つのアルゴリズムの多段階組み合わせを比較し、ソリューションコスト、評価時間、トレーニング時間を報告する。
論文 参考訳(メタデータ) (2021-08-18T08:41:58Z) - Algorithm Selection on a Meta Level [58.720142291102135]
本稿では,与えられたアルゴリズムセレクタの組み合わせに最適な方法を求めるメタアルゴリズム選択の問題を紹介する。
本稿では,メタアルゴリズム選択のための一般的な方法論フレームワークと,このフレームワークのインスタンス化として具体的な学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-20T11:23:21Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Towards Meta-Algorithm Selection [78.13985819417974]
インスタンス固有のアルゴリズム選択(AS)は、固定された候補集合からのアルゴリズムの自動選択を扱う。
メタアルゴリズムの選択は、いくつかのケースで有益であることを示す。
論文 参考訳(メタデータ) (2020-11-17T17:27:33Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。