Are Large Language Models Moral Hypocrites? A Study Based on Moral Foundations
- URL: http://arxiv.org/abs/2405.11100v2
- Date: Tue, 22 Oct 2024 00:02:28 GMT
- Title: Are Large Language Models Moral Hypocrites? A Study Based on Moral Foundations
- Authors: José Luiz Nunes, Guilherme F. C. F. Almeida, Marcelo de Araujo, Simone D. J. Barbosa,
- Abstract summary: We investigate whether state-of-the-art large language models (LLMs) are moral hypocrites.
We employ two research instruments based on the Moral Foundations Theory.
- Score: 0.5278650675825148
- License:
- Abstract: Large language models (LLMs) have taken centre stage in debates on Artificial Intelligence. Yet there remains a gap in how to assess LLMs' conformity to important human values. In this paper, we investigate whether state-of-the-art LLMs, GPT-4 and Claude 2.1 (Gemini Pro and LLAMA 2 did not generate valid results) are moral hypocrites. We employ two research instruments based on the Moral Foundations Theory: (i) the Moral Foundations Questionnaire (MFQ), which investigates which values are considered morally relevant in abstract moral judgements; and (ii) the Moral Foundations Vignettes (MFVs), which evaluate moral cognition in concrete scenarios related to each moral foundation. We characterise conflicts in values between these different abstractions of moral evaluation as hypocrisy. We found that both models displayed reasonable consistency within each instrument compared to humans, but they displayed contradictory and hypocritical behaviour when we compared the abstract values present in the MFQ to the evaluation of concrete moral violations of the MFV.
Related papers
- Evaluating Moral Beliefs across LLMs through a Pluralistic Framework [22.0799438612003]
This study introduces a novel three-module framework to evaluate the moral beliefs of four prominent large language models.
We constructed a dataset containing 472 moral choice scenarios in Chinese, derived from moral words.
By ranking these moral choices, we discern the varying moral beliefs held by different language models.
arXiv Detail & Related papers (2024-11-06T04:52:38Z) - Exploring and steering the moral compass of Large Language Models [55.2480439325792]
Large Language Models (LLMs) have become central to advancing automation and decision-making across various sectors.
This study proposes a comprehensive comparative analysis of the most advanced LLMs to assess their moral profiles.
arXiv Detail & Related papers (2024-05-27T16:49:22Z) - Morality is Non-Binary: Building a Pluralist Moral Sentence Embedding
Space using Contrastive Learning [4.925187725973777]
Pluralist moral philosophers argue that human morality can be deconstructed into a finite number of elements.
We build a pluralist moral sentence embedding space via a state-of-the-art contrastive learning approach.
Our results show that a pluralist approach to morality can be captured in an embedding space.
arXiv Detail & Related papers (2024-01-30T18:15:25Z) - What Makes it Ok to Set a Fire? Iterative Self-distillation of Contexts
and Rationales for Disambiguating Defeasible Social and Moral Situations [48.686872351114964]
Moral or ethical judgments rely heavily on the specific contexts in which they occur.
We introduce defeasible moral reasoning: a task to provide grounded contexts that make an action more or less morally acceptable.
We distill a high-quality dataset of 1.2M entries of contextualizations and rationales for 115K defeasible moral actions.
arXiv Detail & Related papers (2023-10-24T00:51:29Z) - Moral Foundations of Large Language Models [6.6445242437134455]
Moral foundations theory (MFT) is a psychological assessment tool that decomposes human moral reasoning into five factors.
As large language models (LLMs) are trained on datasets collected from the internet, they may reflect the biases that are present in such corpora.
This paper uses MFT as a lens to analyze whether popular LLMs have acquired a bias towards a particular set of moral values.
arXiv Detail & Related papers (2023-10-23T20:05:37Z) - Probing the Moral Development of Large Language Models through Defining
Issues Test [21.108525674360898]
Our study shows that early LLMs exhibit a moral reasoning ability no better than that of a random baseline.
GPT-4, in fact, has the highest post-conventional moral reasoning score, equivalent to that of typical graduate school students.
arXiv Detail & Related papers (2023-09-23T12:17:10Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
Making moral judgments is an essential step toward developing ethical AI systems.
Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality.
This work proposes a flexible top-down framework to steer (Large) Language Models (LMs) to perform moral reasoning with well-established moral theories from interdisciplinary research.
arXiv Detail & Related papers (2023-08-29T15:57:32Z) - MoralDial: A Framework to Train and Evaluate Moral Dialogue Systems via
Moral Discussions [71.25236662907056]
A moral dialogue system aligned with users' values could enhance conversation engagement and user connections.
We propose a framework, MoralDial, to train and evaluate moral dialogue systems.
arXiv Detail & Related papers (2022-12-21T02:21:37Z) - ClarifyDelphi: Reinforced Clarification Questions with Defeasibility
Rewards for Social and Moral Situations [81.70195684646681]
We present ClarifyDelphi, an interactive system that learns to ask clarification questions.
We posit that questions whose potential answers lead to diverging moral judgments are the most informative.
Our work is ultimately inspired by studies in cognitive science that have investigated the flexibility in moral cognition.
arXiv Detail & Related papers (2022-12-20T16:33:09Z) - When to Make Exceptions: Exploring Language Models as Accounts of Human
Moral Judgment [96.77970239683475]
AI systems need to be able to understand, interpret and predict human moral judgments and decisions.
A central challenge for AI safety is capturing the flexibility of the human moral mind.
We present a novel challenge set consisting of rule-breaking question answering.
arXiv Detail & Related papers (2022-10-04T09:04:27Z) - Moral Mimicry: Large Language Models Produce Moral Rationalizations
Tailored to Political Identity [0.0]
This study investigates whether Large Language Models reproduce the moral biases associated with political groups in the United States.
Using tools from Moral Foundations Theory, it is shown that these LLMs are indeed moral mimics.
arXiv Detail & Related papers (2022-09-24T23:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.