論文の概要: A Reproducibility Study on Quantifying Language Similarity: The Impact of Missing Values in the URIEL Knowledge Base
- arxiv url: http://arxiv.org/abs/2405.11125v1
- Date: Fri, 17 May 2024 23:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:27:00.751248
- Title: A Reproducibility Study on Quantifying Language Similarity: The Impact of Missing Values in the URIEL Knowledge Base
- Title(参考訳): 言語類似性の定量化に関する再現性調査:URIEL知識ベースにおける欠落値の影響
- Authors: Hasti Toossi, Guo Qing Huai, Jinyu Liu, Eric Khiu, A. Seza Doğruöz, En-Shiun Annie Lee,
- Abstract要約: 本稿では,言語情報を数値ベクトルに集約する言語知識基盤ELに着目した。
分析の結果,言語距離の計算や欠落した値の処理におけるELの曖昧さが明らかになった。
我々はELが代表する31%の言語に対して,類型的特徴に関する情報を提供していないことを発見した。
- 参考スコア(独自算出の注目度): 1.7158992329478076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the pursuit of supporting more languages around the world, tools that characterize properties of languages play a key role in expanding the existing multilingual NLP research. In this study, we focus on a widely used typological knowledge base, URIEL, which aggregates linguistic information into numeric vectors. Specifically, we delve into the soundness and reproducibility of the approach taken by URIEL in quantifying language similarity. Our analysis reveals URIEL's ambiguity in calculating language distances and in handling missing values. Moreover, we find that URIEL does not provide any information about typological features for 31\% of the languages it represents, undermining the reliabilility of the database, particularly on low-resource languages. Our literature review suggests URIEL and lang2vec are used in papers on diverse NLP tasks, which motivates us to rigorously verify the database as the effectiveness of these works depends on the reliability of the information the tool provides.
- Abstract(参考訳): 世界中の言語をサポートするために、言語の性質を特徴づけるツールが、既存の多言語NLP研究の拡大に重要な役割を果たしている。
本研究では,言語情報を数値ベクトルに集約する汎用型知識ベースであるURIELに着目した。
具体的には、URIELによる言語類似性の定量化におけるアプローチの健全性と再現性について検討する。
解析の結果,言語距離の計算や欠落した値の処理におけるURIELの曖昧さが明らかになった。
さらに, URIELは, データベースの信頼性, 特に低リソース言語に対する信頼性を損なうものとして, 表現する言語の31.5%に対して, タイプ的特徴に関する情報を提供していないことがわかった。
我々の文献レビューでは、URIELとlang2vecは多様なNLPタスクに関する論文で使われており、これらの作業の有効性はツールが提供する情報の信頼性に依存するため、データベースを厳格に検証する動機となっている。
関連論文リスト
- Adapting Multilingual LLMs to Low-Resource Languages with Knowledge Graphs via Adapters [3.7273829129985305]
本稿では,言語から多言語大モデル(LLM)へのグラフ知識の統合について検討する。
我々は、感情分析(SA)および名前付きエンティティ認識(NER)における低リソース言語(LRL)の性能向上のために、言語固有のアダプタを使用している。
構造化グラフ知識が,SA および NER における LRL の多言語 LLM の性能に与える影響を評価する。
論文 参考訳(メタデータ) (2024-07-01T15:56:24Z) - Cross-Lingual Transfer Robustness to Lower-Resource Languages on Adversarial Datasets [4.653113033432781]
多言語言語モデル(MLLM)の言語間伝達能力について検討した。
本研究は,言語間移動とそのNLP応用への応用に関する貴重な知見を提供する。
論文 参考訳(メタデータ) (2024-03-29T08:47:15Z) - LLMs Are Few-Shot In-Context Low-Resource Language Learners [59.74451570590808]
In-context Learning (ICL) は、大規模言語モデル(LLM)に、表現不足の言語で多様なタスクを実行する権限を与える。
ICLとその言語間変動(X-ICL)を25の低リソース言語と7の比較的高リソース言語で検討した。
本研究は,LLMの低リソース理解品質向上における文脈内情報の重要性を論じる。
論文 参考訳(メタデータ) (2024-03-25T07:55:29Z) - A Measure for Transparent Comparison of Linguistic Diversity in Multilingual NLP Data Sets [1.1647644386277962]
多言語NLPで達成された進歩を追跡するため、タイポロジー的に多様性のあるベンチマークがますます作成されている。
本稿では,参照言語サンプルに対してデータセットの言語多様性を評価することを提案する。
論文 参考訳(メタデータ) (2024-03-06T18:14:22Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
この研究は、明らかな相違を明らかにし、マインドフルなデータ収集を通じてそれらに対処する可能性のある経路を特定することによって、方言NLPの分野を強化する基盤となる。
論文 参考訳(メタデータ) (2023-10-23T17:42:01Z) - Automatic Readability Assessment for Closely Related Languages [6.233117407988574]
この研究は、相互の知性や言語関連度などの言語的側面が、低リソース環境でのARAをどのように改善できるかに焦点を当てる。
フィリピン・タガログ語・ビコル語・セブアーノ語の3言語で書かれた短い記事を収集し,読みやすさ評価モデルを構築した。
本研究は, 相互信頼度の高い言語にn-gram重み付けを適用した新たな機能であるCrossNGOの導入により, ARAモデルの性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2023-05-22T20:42:53Z) - Beyond Counting Datasets: A Survey of Multilingual Dataset Construction
and Necessary Resources [38.814057529254846]
公開されている156個のNLPデータセットの特徴について検討する。
言語に習熟したNLP研究者と集団労働者を対象に調査を行った。
メカニカルトルコプラットフォーム上で高品質な多言語データを収集するための戦略を同定する。
論文 参考訳(メタデータ) (2022-11-28T18:54:33Z) - Learning Domain-Specialised Representations for Cross-Lingual Biomedical
Entity Linking [66.76141128555099]
言語横断型バイオメディカルエンティティリンクタスク(XL-BEL)を提案する。
まず、標準単言語英語BELタスクを超えて、標準単言語および多言語LMと同様に、標準的な知識に依存しない能力について検討する。
次に、リソースに富んだ言語からリソースに乏しい言語にドメイン固有の知識を移すことの課題に対処する。
論文 参考訳(メタデータ) (2021-05-30T00:50:00Z) - Linguistic Typology Features from Text: Inferring the Sparse Features of
World Atlas of Language Structures [73.06435180872293]
我々は、バイト埋め込みと畳み込み層に基づく繰り返しニューラルネットワーク予測器を構築する。
様々な言語型の特徴を確実に予測できることを示す。
論文 参考訳(メタデータ) (2020-04-30T21:00:53Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。