論文の概要: Multi-scale Information Sharing and Selection Network with Boundary Attention for Polyp Segmentation
- arxiv url: http://arxiv.org/abs/2405.11151v1
- Date: Sat, 18 May 2024 02:48:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:17:16.056944
- Title: Multi-scale Information Sharing and Selection Network with Boundary Attention for Polyp Segmentation
- Title(参考訳): ポリプセグメンテーションのための境界を考慮したマルチスケール情報共有・選択ネットワーク
- Authors: Xiaolu Kang, Zhuoqi Ma, Kang Liu, Yunan Li, Qiguang Miao,
- Abstract要約: 本稿では,多目的セグメンテーションタスクのためのマルチスケール情報共有選択ネットワーク(MISNet)を提案する。
5つのpolypセグメンテーションデータセットの実験により、MISNetはセグメンテーション結果の精度と明確性を改善した。
- 参考スコア(独自算出の注目度): 10.152504573356413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polyp segmentation for colonoscopy images is of vital importance in clinical practice. It can provide valuable information for colorectal cancer diagnosis and surgery. While existing methods have achieved relatively good performance, polyp segmentation still faces the following challenges: (1) Varying lighting conditions in colonoscopy and differences in polyp locations, sizes, and morphologies. (2) The indistinct boundary between polyps and surrounding tissue. To address these challenges, we propose a Multi-scale information sharing and selection network (MISNet) for polyp segmentation task. We design a Selectively Shared Fusion Module (SSFM) to enforce information sharing and active selection between low-level and high-level features, thereby enhancing model's ability to capture comprehensive information. We then design a Parallel Attention Module (PAM) to enhance model's attention to boundaries, and a Balancing Weight Module (BWM) to facilitate the continuous refinement of boundary segmentation in the bottom-up process. Experiments on five polyp segmentation datasets demonstrate that MISNet successfully improved the accuracy and clarity of segmentation result, outperforming state-of-the-art methods.
- Abstract(参考訳): 大腸内視鏡検査におけるポリープセグメンテーションは臨床的に重要である。
大腸癌の診断と手術に有用な情報を提供することができる。
既存の手法は比較的良好な性能を示したが,(1)大腸内視鏡検査における照明条件の変化,およびポリプの位置,サイズ,形態の差異など,ポリプセグメンテーションは依然として課題に直面している。
2)ポリープと周囲組織の境界
これらの課題に対処するために,ポリプセグメンテーションタスクのためのMISNet(Multi-scale information sharing and selection network)を提案する。
我々は、情報共有と低レベル特徴と高レベル特徴のアクティブな選択を強制するSSFM(Selectively Shared Fusion Module)を設計し、包括的情報を捕捉するモデルの能力を向上する。
次に,バランシング重みモジュール(BWM)を設計し,ボトムアッププロセスにおける境界セグメンテーションの継続的な改善を容易にする。
5つのポリプセグメンテーションデータセットの実験により、MISNetはセグメンテーション結果の精度と明快さを向上し、最先端の手法より優れていることが示された。
関連論文リスト
- ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
SAM(Segment Anything Model)は、ポリープセグメンテーションに先例のないポテンシャルを導入している。
SAMのTransformerベースの構造は、グローバルおよび低周波情報を優先する。
CFAはトレーニング可能なCNNエンコーダブランチと凍結したViTエンコーダを統合し、ドメイン固有の知識の統合を可能にする。
論文 参考訳(メタデータ) (2024-06-30T14:55:32Z) - SAM-EG: Segment Anything Model with Egde Guidance framework for efficient Polyp Segmentation [6.709243857842895]
本稿では,ポリプセグメンテーションのための小さなセグメンテーションモデルを用いて,コスト問題に対処するフレームワークを提案する。
本研究では,エッジ情報を画像特徴に組み込むEdge Guidingモジュールを提案する。
我々の小型モデルは、最先端の手法で競争結果を得ることで、その効果を実証する。
論文 参考訳(メタデータ) (2024-06-21T01:42:20Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Segment Anything Model-guided Collaborative Learning Network for
Scribble-supervised Polyp Segmentation [45.15517909664628]
ポリープのセグメンテーションは、初期におけるポリープの正確な位置決定に重要な役割を担っている。
診断中の医師によるポリープ画像に対するピクセルワイドアノテーションは、時間と費用の両方がかかる。
本稿では,スクリブル制御ポリプセグメンテーションのためのSAM誘導協調学習ネットワーク(SAM-CLNet)を提案する。
論文 参考訳(メタデータ) (2023-12-01T03:07:13Z) - Edge-aware Feature Aggregation Network for Polyp Segmentation [40.3881565207086]
本研究では,ポリプセグメンテーションのためのエッジ対応特徴集約ネットワーク(EFA-Net)を提案する。
EFA-Netは、ポリプセグメンテーションの性能を高めるために、クロスレベルとマルチスケールの機能を完全に活用することができる。
広く採用されている5つの大腸内視鏡データセットの実験結果から,我々のEFA-Netは,一般化と有効性の観点から,最先端のポリプセグメンテーション法より優れていることが示された。
論文 参考訳(メタデータ) (2023-09-19T11:09:38Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
ポリープセグメンテーションのための障害対応動的ネットワーク(LDNet)を提案する。
従来のU字型エンコーダ・デコーダ構造であり、動的カーネル生成と更新スキームが組み込まれている。
この単純だが効果的なスキームは、我々のモデルに強力なセグメンテーション性能と一般化能力を与える。
論文 参考訳(メタデータ) (2023-01-12T09:53:57Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
本稿では,ローカルコンテキストアテンション(LCA)モジュール,グローバルコンテキストモジュール(GCM)モジュール,適応選択モジュール(ASM)モジュールで構成される適応コンテキスト選択に基づくエンコーダデコーダフレームワークを提案する。
LCAモジュールは、エンコーダ層からデコーダ層へローカルなコンテキスト機能を提供する。
GCMは、グローバルなコンテキストの特徴をさらに探求し、デコーダ層に送信することを目的としている。ASMは、チャンネルワイドアテンションを通じて、コンテキスト特徴の適応的選択と集約に使用される。
論文 参考訳(メタデータ) (2023-01-12T04:06:44Z) - BDG-Net: Boundary Distribution Guided Network for Accurate Polyp
Segmentation [9.175022232984709]
ポリープ切除術は腺腫から腺癌への進行を効果的に阻害することができる。
ポリープの大きさやポリープとその周囲の粘膜の境界が不明瞭であるため、ポリープを正確に分割することは困難である。
正確なポリープ分割のための境界分布誘導ネットワーク(BDG-Net)を設計する。
論文 参考訳(メタデータ) (2022-01-03T17:15:18Z) - Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers [124.01928050651466]
本稿では,Polyp-PVTと呼ばれる新しいタイプのPolypセグメンテーション手法を提案する。
提案モデルであるPolyp-PVTは,特徴の雑音を効果的に抑制し,その表現能力を大幅に向上させる。
論文 参考訳(メタデータ) (2021-08-16T07:09:06Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
大腸内視鏡画像の高精度なポリープ分割のための並列リバースアテンションネットワーク(PraNet)を提案する。
並列部分復号器(PPD)を用いて,まず高層層に特徴を集約する。
さらに,エリアとバウンダリの関連性を確立するために,リバースアテンション(RA)モジュールを用いて境界キューをマイニングする。
論文 参考訳(メタデータ) (2020-06-13T08:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。