論文の概要: Automated Multi-level Preference for MLLMs
- arxiv url: http://arxiv.org/abs/2405.11165v3
- Date: Tue, 28 May 2024 07:54:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 11:28:48.679839
- Title: Automated Multi-level Preference for MLLMs
- Title(参考訳): MLLMのマルチレベル自動選好
- Authors: Mengxi Zhang, Wenhao Wu, Yu Lu, Yuxin Song, Kang Rong, Huanjin Yao, Jianbo Zhao, Fanglong Liu, Yifan Sun, Haocheng Feng, Jingdong Wang,
- Abstract要約: 「現在のマルチモーダル大言語モデル(MLLM)は幻覚に苦しむ」
有望な道の1つは、人間からのフィードバック(RLHF)からの強化学習を利用することである。
二項選好(上等、下等)の一般的な実践を再考し、多水準選好を採用する方が2つの利点があることを示す。
- 参考スコア(独自算出の注目度): 41.72392895643214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current multimodal Large Language Models (MLLMs) suffer from ``hallucination'', occasionally generating responses that are not grounded in the input images. To tackle this challenge, one promising path is to utilize reinforcement learning from human feedback (RLHF), which steers MLLMs towards learning superior responses while avoiding inferior ones. We rethink the common practice of using binary preferences (i.e., superior, inferior), and find that adopting multi-level preferences (e.g., superior, medium, inferior) is better for two benefits: 1) It narrows the gap between adjacent levels, thereby encouraging MLLMs to discern subtle differences. 2) It further integrates cross-level comparisons (beyond adjacent-level comparisons), thus providing a broader range of comparisons with hallucination examples. To verify our viewpoint, we present the Automated Multi-level Preference (AMP) framework for MLLMs. To facilitate this framework, we first develop an automated dataset generation pipeline that provides high-quality multi-level preference datasets without any human annotators. Furthermore, we design the Multi-level Direct Preference Optimization (MDPO) algorithm to robustly conduct complex multi-level preference learning. Additionally, we propose a new hallucination benchmark, MRHal-Bench. Extensive experiments across public hallucination and general benchmarks, as well as our MRHal-Bench, demonstrate the effectiveness of our proposed method. Code is available at https://github.com/takomc/amp.
- Abstract(参考訳): 現在のMLLM(Multimodal Large Language Models)は 'hallucination' に悩まされており、時には入力画像に基づかない応答を生成する。
この課題に対処するためには、人間からのフィードバック(RLHF)からの強化学習を利用することが期待できる。
二項選好(上等、下等)の一般的な実践を再考し、多水準選好(上等、中等、下等)を採用する方が2つの利点があることを示す。
1) 隣接レベル間のギャップを狭くし, MLLMが微妙な違いを識別できるようにする。
2) クロスレベル比較(隣接レベル比較)をさらに統合し,幻覚例との比較範囲を広げた。
本稿では,MLLMのためのAMPフレームワークについて述べる。
このフレームワークを容易にするために、まず、人間のアノテータを使わずに高品質なマルチレベル嗜好データセットを提供する自動データセット生成パイプラインを開発する。
さらに,多レベル直接選好最適化(MDPO)アルゴリズムを設計し,複雑な多レベル選好学習を行う。
さらに,新しい幻覚ベンチマークMRHal-Benchを提案する。
我々のMRHal-Benchと同様に、公衆の幻覚や一般ベンチマークの広範な実験により、提案手法の有効性を実証した。
コードはhttps://github.com/takomc/amp.comから入手できる。
関連論文リスト
- LAMPO: Large Language Models as Preference Machines for Few-shot Ordinal Classification [34.9210323553677]
LAMPOは,Large Language Models (LLMs) を多クラス順序分類タスクに応用した新しいパラダイムである。
7つの公開データセットに関する大規模な実験は、多様なアプリケーションにわたるLAMPOの極めて競争力のあるパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-08-06T15:55:05Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
大きな言語モデル(LLM)を整列させる一般的な手法は、人間の好みを取得することに依存する。
本稿では,命令応答対に対して協調的に好みを抽出する新たな軸を提案する。
また,LLMのアライメントを大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-31T02:05:40Z) - Strengthening Multimodal Large Language Model with Bootstrapped Preference Optimization [25.290462963681257]
MLLM(Multimodal Large Language Models)は、視覚的な入力に基づいて応答を生成する。
彼らはしばしば、事前学習したコーパスと同様の反応を生み出すバイアスに悩まされ、視覚情報の重要性を誇示する。
我々は、このバイアスを事前学習統計のための"推奨"として扱い、視覚入力におけるモデルの基盤を妨げます。
論文 参考訳(メタデータ) (2024-03-13T17:29:45Z) - Fine-Grained Self-Endorsement Improves Factuality and Reasoning [72.83651220132495]
本研究は, 大規模言語モデル (LLM) 世代を推定時に改善するために, ファクト・コンプレッション・幻覚を緩和する。
本稿では,複数のサンプル応答におけるファクトレベルの詳細な比較を生かした自己組織化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-23T22:24:40Z) - Aligning Modalities in Vision Large Language Models via Preference
Fine-tuning [67.62925151837675]
本研究では,幻覚の問題をアライメント問題とみなし,好みのチューニングで対処する。
具体的には,AIモデルを用いたフィードバックデータを生成するPOVIDを提案する。
提案手法は,好ましくないデータを生成するための2段階のアプローチである。
広範ベンチマークを用いた実験では、幻覚を減らすだけでなく、標準ベンチマークでのモデル性能を向上させることができ、従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-02-18T00:56:16Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - LLM-Blender: Ensembling Large Language Models with Pairwise Ranking and
Generative Fusion [33.73671362609599]
私たちのフレームワークはPairRankerとGenFuserの2つのモジュールで構成されています。
PairRankerは、候補出力間の微妙な違いを区別するために、特殊なペアワイズ比較手法を使用している。
GenFuserは、上位候補をマージし、改善されたアウトプットを生成することを目的としている。
論文 参考訳(メタデータ) (2023-06-05T03:32:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。