Optimal quantum controls robust against detuning error
- URL: http://arxiv.org/abs/2405.11170v1
- Date: Sat, 18 May 2024 04:11:18 GMT
- Title: Optimal quantum controls robust against detuning error
- Authors: Shingo Kukita, Haruki Kiya, Yasushi Kondo,
- Abstract summary: We use the Pontryagin's maximum principle (PMP) to solve the time and pulse-area optimization problems.
We find that short-CORPSE is a probable candidate of the time optimal solution according to the PMP.
We evaluate the performance of the pulse-area optimal robust control and the short-CORPSE, comparing with that of the direct operation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise control of quantum systems is one of the most important milestones for achieving practical quantum technologies, such as computation, sensing, and communication. Several factors deteriorate the control precision and thus their suppression is strongly demanded. One of the dominant factors is systematic errors, which are caused by discord between an expected parameter in control and its actual value. Error-robust control sequences, known as composite pulses, have been invented in the field of nuclear magnetic resonance (NMR). These sequences mainly focus on the suppression of errors in one-qubit control. The one-qubit control, which is the most fundamental in a wide range of quantum technologies, often suffers from detuning error. As there are many possible control sequences robust against the detuning error, it will practically be important to find ``optimal" robust controls with respect to several cost functions such as time required for operation, and pulse-area during the operation, which corresponds to the energy necessary for control. In this paper, we utilize the Pontryagin's maximum principle (PMP), a tool for solving optimization problems under inequality constraints, to solve the time and pulse-area optimization problems. We analytically obtain pulse-area optimal controls robust against the detuning error. Moreover, we found that short-CORPSE, which is the shortest known composite pulse so far, is a probable candidate of the time optimal solution according to the PMP. We evaluate the performance of the pulse-area optimal robust control and the short-CORPSE, comparing with that of the direct operation.
Related papers
- Constructing Noise-Robust Quantum Gates via Pontryagin's Maximum Principle [0.9208007322096532]
We present a framework based in geometric optimal control theory to synthesize smooth control pulses for implementing arbitrary noise-robust quantum gates.
The methodology applies to generic unitary quantum dynamics with any number of qubits or energy levels, any number of control fields, and any number of disturbances.
arXiv Detail & Related papers (2024-09-18T19:48:20Z) - Robust optimal control for a systematic error in the control amplitude of transmon qubits [0.0]
We show that pulses designed by optimization can be used to counteract the loss of fidelity due to a control amplitude error of the transmon qubit.
We analyze the control landscape obtained by robust optimal control and find it to depend on the error range.
The controls are tested on the IBMQ's qubit and found to demonstrate resilience against significant $sim 10%$ errors.
arXiv Detail & Related papers (2024-08-24T11:29:06Z) - Frame Change Technique for Phase Transient Cancellation [5.078139820108554]
In our solid-state NMR system, we perform quantum simulation by modulating the natural Hamiltonian with control pulses.
In this work, we detail our ability to diagnose the error, calibrate its magnitude, and correct it for $pi/2$-pulses of arbitrary phase.
arXiv Detail & Related papers (2023-11-27T20:08:01Z) - Robust Control of Single-Qubit Gates at the Quantum Speed Limit [0.0]
We investigate the underlying robust time-optimal control problem so as to make the best balance.
Based on the Taylor expansion of the system's unitary propagator, we formulate the design problem as the optimal control of an augmented finite-dimensional system.
Numerical simulations for single-qubit systems show that the obtained time-optimal control pulses can effectively suppress gate errors.
arXiv Detail & Related papers (2023-09-11T10:10:58Z) - Solving quantum optimal control problems using projection-operator-based
Newton steps [0.25602836891933073]
The paper significantly improves prior versions of the quantum projection operator by introducing a regulator that stabilizes the solution estimate at every iteration.
This modification is shown to not only improve the convergence rate of the algorithm, but also steer the solver towards better local minima.
arXiv Detail & Related papers (2023-05-28T04:30:35Z) - Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - Regret-optimal Estimation and Control [52.28457815067461]
We show that the regret-optimal estimator and regret-optimal controller can be derived in state-space form.
We propose regret-optimal analogs of Model-Predictive Control (MPC) and the Extended KalmanFilter (EKF) for systems with nonlinear dynamics.
arXiv Detail & Related papers (2021-06-22T23:14:21Z) - Optimal control of a nitrogen-vacancy spin ensemble in diamond for
sensing in the pulsed domain [52.77024349608834]
Defects in solid state materials provide an ideal platform for quantum sensing.
Control of such an ensemble is challenging due to the spatial variation in both the defect energy levels and in any control field across a macroscopic sample.
We experimentally demonstrate that we can overcome these challenges using Floquet theory and optimal control optimization methods.
arXiv Detail & Related papers (2021-01-25T13:01:05Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.