論文の概要: Fuse & Calibrate: A bi-directional Vision-Language Guided Framework for Referring Image Segmentation
- arxiv url: http://arxiv.org/abs/2405.11205v1
- Date: Sat, 18 May 2024 07:21:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 18:57:45.855470
- Title: Fuse & Calibrate: A bi-directional Vision-Language Guided Framework for Referring Image Segmentation
- Title(参考訳): Fuse & Calibrate:イメージセグメンテーションの参照のための双方向視覚言語ガイドフレームワーク
- Authors: Yichen Yan, Xingjian He, Sihan Chen, Shichen Lu, Jing Liu,
- Abstract要約: FCNetは,視覚と言語の両方が役割を担っている,双方向誘導融合方式のフレームワークである。
具体的には、視覚誘導方式を用いて初期マルチモーダル融合を行い、キービジョン情報に焦点を当てたマルチモーダル特徴を得る。
次に,言語誘導型キャリブレーションモジュールを提案し,これらのマルチモーダル特徴をキャリブレーションし,入力文の文脈を確実に理解する。
- 参考スコア(独自算出の注目度): 8.383431263616105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring Image Segmentation (RIS) aims to segment an object described in natural language from an image, with the main challenge being a text-to-pixel correlation. Previous methods typically rely on single-modality features, such as vision or language features, to guide the multi-modal fusion process. However, this approach limits the interaction between vision and language, leading to a lack of fine-grained correlation between the language description and pixel-level details during the decoding process. In this paper, we introduce FCNet, a framework that employs a bi-directional guided fusion approach where both vision and language play guiding roles. Specifically, we use a vision-guided approach to conduct initial multi-modal fusion, obtaining multi-modal features that focus on key vision information. We then propose a language-guided calibration module to further calibrate these multi-modal features, ensuring they understand the context of the input sentence. This bi-directional vision-language guided approach produces higher-quality multi-modal features sent to the decoder, facilitating adaptive propagation of fine-grained semantic information from textual features to visual features. Experiments on RefCOCO, RefCOCO+, and G-Ref datasets with various backbones consistently show our approach outperforming state-of-the-art methods.
- Abstract(参考訳): Referring Image Segmentation (RIS)は、自然言語で記述されたオブジェクトを画像からセグメント化することを目的としており、主な課題はテキストとピクセルの相関である。
従来の手法では、マルチモーダル融合プロセスを導くために、視覚や言語といった単一モーダルな特徴に依存していた。
しかし、この手法は視覚と言語間の相互作用を制限し、デコード処理中に言語記述とピクセルレベルの詳細との間の微妙な相関が欠如する。
本稿では,視覚と言語の両方が指導役を務める双方向誘導融合方式のフレームワークであるFCNetを紹介する。
具体的には、視覚誘導方式を用いて初期マルチモーダル融合を行い、キービジョン情報に焦点を当てたマルチモーダル特徴を得る。
次に,言語誘導型キャリブレーションモジュールを提案し,これらのマルチモーダル特徴をキャリブレーションし,入力文の文脈を確実に理解する。
この双方向視覚言語誘導アプローチは、テキスト特徴から視覚特徴への微粒な意味情報の適応的伝播を容易にし、デコーダに送信される高品質なマルチモーダル特徴を生成する。
RefCOCO、RefCOCO+、G-Refデータセットに対する様々なバックボーンによる実験は、常に我々のアプローチが最先端の手法より優れていることを示している。
関連論文リスト
- Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation [26.262887028563163]
Referring Image (RIS)は、自然言語で表現されたターゲットオブジェクトをピクセルレベルのシーン内でセグメントすることを目的としている。
マスク付きオートエンコーダ(MAE)に触発された新しい双方向トークンマスキングオートエンコーダ(BTMAE)を提案する。
BTMAEは、画像と言語の両方に欠けている機能をトークンレベルで再構築することで、画像から言語、言語へのイメージのコンテキストを学習する。
論文 参考訳(メタデータ) (2023-11-29T07:33:38Z) - RISAM: Referring Image Segmentation via Mutual-Aware Attention Features [13.64992652002458]
イメージセグメンテーション(RIS)は、言語表現プロンプトに基づいて特定の領域をセグメンテーションすることを目的としている。
既存の手法では、言語的特徴を視覚的特徴に取り入れ、マスク復号のためのマルチモーダル特徴を得る。
本稿では,SAM(Seegment Anything Model)を利用した参照画像分割手法MARISを提案する。
論文 参考訳(メタデータ) (2023-11-27T11:24:25Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
本研究は,一般的なNLPタスクの補助信号として視覚情報を利用する新しい手法を提案する。
各文に対して、まず、既存の文-画像ペア上で抽出された軽トピック-画像検索テーブルから、フレキシブルな画像を検索する。
そして、テキストと画像はそれぞれトランスフォーマーエンコーダと畳み込みニューラルネットワークによって符号化される。
論文 参考訳(メタデータ) (2023-01-09T13:54:11Z) - Modeling Motion with Multi-Modal Features for Text-Based Video
Segmentation [56.41614987789537]
テキストベースのビデオセグメンテーションは、対象のオブジェクトを記述文に基づいてビデオに分割することを目的としている。
本研究では, 正確なセグメンテーションを実現するために, 外観, 動き, 言語的特徴を融合, 整合させる手法を提案する。
論文 参考訳(メタデータ) (2022-04-06T02:42:33Z) - LAVT: Language-Aware Vision Transformer for Referring Image Segmentation [80.54244087314025]
視覚トランスフォーマーエンコーダネットワークにおいて,言語的特徴と視覚的特徴を早期に融合することにより,より優れたモーダルアライメントを実現することができることを示す。
提案手法は,RefCOCO,RefCO+,G-Refの従来の最先端手法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-12-04T04:53:35Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation [87.01669173673288]
本稿では,視覚的エンコーダをマルチモーダルな特徴学習ネットワークに変換するエンコーダ融合ネットワーク(EFN)を提案する。
EFNには、マルチモーダル機能の並列更新を実現するコアテンションメカニズムが組み込まれている。
4つのベンチマークデータセットによる実験結果から,提案手法がポストプロセッシングを伴わずに最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-05T02:27:25Z) - Fusion Models for Improved Visual Captioning [18.016295296424413]
本稿では,キャプション生成と修正のための汎用マルチモーダルモデル融合フレームワークを提案する。
我々は、事前訓練されたマスケッド言語モデル(MLM)と視覚的キャプションモデル、Viz. Show、Attend、Tellを統合するために、同じ融合戦略を採用している。
Flickr8k, Flickr30k, MSCOCOの3つのベンチマーク画像キャプションデータセットに対するキャプション評価実験では, ベースラインよりも改善が見られた。
論文 参考訳(メタデータ) (2020-10-28T21:55:25Z) - Referring Image Segmentation via Cross-Modal Progressive Comprehension [94.70482302324704]
画像セグメンテーションの参照は、自然言語表現で与えられた記述によく一致するエンティティの前景マスクをセグメンテーションすることを目的としている。
従来のアプローチでは、暗黙的な特徴相互作用と視覚的モダリティと言語的モダリティの融合を用いてこの問題に対処していた。
本稿では,この課題に効果的に対応するために,Cross-Modal Progressive (CMPC) モジュールと Text-Guided Feature Exchange (TGFE) モジュールを提案する。
論文 参考訳(メタデータ) (2020-10-01T16:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。