Towards Robust Policy: Enhancing Offline Reinforcement Learning with Adversarial Attacks and Defenses
- URL: http://arxiv.org/abs/2405.11206v1
- Date: Sat, 18 May 2024 07:23:44 GMT
- Title: Towards Robust Policy: Enhancing Offline Reinforcement Learning with Adversarial Attacks and Defenses
- Authors: Thanh Nguyen, Tung M. Luu, Tri Ton, Chang D. Yoo,
- Abstract summary: offline reinforcement learning (RL) addresses the challenge of expensive and high-risk data exploration inherent in RL by pre-training policies on vast amounts of offline data.
This paper proposes a framework to enhance the robustness of offline RL models by leveraging advanced adversarial attacks and defenses.
- Score: 19.918548094276005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline reinforcement learning (RL) addresses the challenge of expensive and high-risk data exploration inherent in RL by pre-training policies on vast amounts of offline data, enabling direct deployment or fine-tuning in real-world environments. However, this training paradigm can compromise policy robustness, leading to degraded performance in practical conditions due to observation perturbations or intentional attacks. While adversarial attacks and defenses have been extensively studied in deep learning, their application in offline RL is limited. This paper proposes a framework to enhance the robustness of offline RL models by leveraging advanced adversarial attacks and defenses. The framework attacks the actor and critic components by perturbing observations during training and using adversarial defenses as regularization to enhance the learned policy. Four attacks and two defenses are introduced and evaluated on the D4RL benchmark. The results show the vulnerability of both the actor and critic to attacks and the effectiveness of the defenses in improving policy robustness. This framework holds promise for enhancing the reliability of offline RL models in practical scenarios.
Related papers
- Robust Deep Reinforcement Learning Through Adversarial Attacks and
Training : A Survey [8.463282079069362]
Deep Reinforcement Learning (DRL) is an approach for training autonomous agents across various complex environments.
It remains susceptible to minor conditions variations, raising concerns about its reliability in real-world applications.
A way to improve robustness of DRL to unknown changes in the conditions is through Adversarial Training.
arXiv Detail & Related papers (2024-03-01T10:16:46Z) - ReRoGCRL: Representation-based Robustness in Goal-Conditioned
Reinforcement Learning [29.868059421372244]
Goal-Conditioned Reinforcement Learning (GCRL) has gained attention, but its algorithmic robustness against adversarial perturbations remains unexplored.
We first propose the Semi-Contrastive Representation attack, inspired by the adversarial contrastive attack.
We then introduce Adversarial Representation Tactics, which combines Semi-Contrastive Adversarial Augmentation with Sensitivity-Aware Regularizer.
arXiv Detail & Related papers (2023-12-12T16:05:55Z) - Guided Online Distillation: Promoting Safe Reinforcement Learning by
Offline Demonstration [75.51109230296568]
We argue that extracting expert policy from offline data to guide online exploration is a promising solution to mitigate the conserveness issue.
We propose Guided Online Distillation (GOLD), an offline-to-online safe RL framework.
GOLD distills an offline DT policy into a lightweight policy network through guided online safe RL training, which outperforms both the offline DT policy and online safe RL algorithms.
arXiv Detail & Related papers (2023-09-18T00:22:59Z) - Attacking and Defending Deep Reinforcement Learning Policies [3.6985039575807246]
We study robustness of DRL policies to adversarial attacks from the perspective of robust optimization.
We propose a greedy attack algorithm, which tries to minimize the expected return of the policy without interacting with the environment, and a defense algorithm, which performs adversarial training in a max-min form.
arXiv Detail & Related papers (2022-05-16T12:47:54Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Robust Reinforcement Learning on State Observations with Learned Optimal
Adversary [86.0846119254031]
We study the robustness of reinforcement learning with adversarially perturbed state observations.
With a fixed agent policy, we demonstrate that an optimal adversary to perturb state observations can be found.
For DRL settings, this leads to a novel empirical adversarial attack to RL agents via a learned adversary that is much stronger than previous ones.
arXiv Detail & Related papers (2021-01-21T05:38:52Z) - Adversarial jamming attacks and defense strategies via adaptive deep
reinforcement learning [12.11027948206573]
In this paper, we consider a victim user that performs DRL-based dynamic channel access, and an attacker that executes DRLbased jamming attacks to disrupt the victim.
Both the victim and attacker are DRL agents and can interact with each other, retrain their models, and adapt to opponents' policies.
We propose three defense strategies to maximize the attacked victim's accuracy and evaluate their performances.
arXiv Detail & Related papers (2020-07-12T18:16:00Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
A deep reinforcement learning (DRL) agent observes its states through observations, which may contain natural measurement errors or adversarial noises.
Since the observations deviate from the true states, they can mislead the agent into making suboptimal actions.
We show that naively applying existing techniques on improving robustness for classification tasks, like adversarial training, is ineffective for many RL tasks.
arXiv Detail & Related papers (2020-03-19T17:59:59Z) - Challenges and Countermeasures for Adversarial Attacks on Deep
Reinforcement Learning [48.49658986576776]
Deep Reinforcement Learning (DRL) has numerous applications in the real world thanks to its outstanding ability in adapting to the surrounding environments.
Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications.
This paper presents emerging attacks in DRL-based systems and the potential countermeasures to defend against these attacks.
arXiv Detail & Related papers (2020-01-27T10:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.