Real Time Monitoring and Forecasting of COVID 19 Cases using an Adjusted Holt based Hybrid Model embedded with Wavelet based ANN
- URL: http://arxiv.org/abs/2405.11213v1
- Date: Sat, 18 May 2024 07:37:20 GMT
- Title: Real Time Monitoring and Forecasting of COVID 19 Cases using an Adjusted Holt based Hybrid Model embedded with Wavelet based ANN
- Authors: Agniva Das, Kunnummal Muralidharan,
- Abstract summary: The primary model in question is a Hybrid Holt's Model embedded with a Wavelet-based ANN.
We have tested the proposed model on the number of confirmed cases (daily) for the entire country as well as 6 hotspot states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the inception of the SARS - CoV - 2 (COVID - 19) novel coronavirus, a lot of time and effort is being allocated to estimate the trajectory and possibly, forecast with a reasonable degree of accuracy, the number of cases, recoveries, and deaths due to the same. The model proposed in this paper is a mindful step in the same direction. The primary model in question is a Hybrid Holt's Model embedded with a Wavelet-based ANN. To test its forecasting ability, we have compared three separate models, the first, being a simple ARIMA model, the second, also an ARIMA model with a wavelet-based function, and the third, being the proposed model. We have also compared the forecast accuracy of this model with that of a modern day Vanilla LSTM recurrent neural network model. We have tested the proposed model on the number of confirmed cases (daily) for the entire country as well as 6 hotspot states. We have also proposed a simple adjustment algorithm in addition to the hybrid model so that daily and/or weekly forecasts can be meted out, with respect to the entirety of the country, as well as a moving window performance metric based on out-of-sample forecasts. In order to have a more rounded approach to the analysis of COVID-19 dynamics, focus has also been given to the estimation of the Basic Reproduction Number, $R_0$ using a compartmental epidemiological model (SIR). Lastly, we have also given substantial attention to estimating the shelf-life of the proposed model. It is obvious yet noteworthy how an accurate model, in this regard, can ensure better allocation of healthcare resources, as well as, enable the government to take necessary measures ahead of time.
Related papers
- Prithvi WxC: Foundation Model for Weather and Climate [2.9230020115516253]
Prithvi WxC is a 2.3 billion parameter foundation model developed using 160 variables from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2).
The model has been designed to accommodate large token counts to model weather phenomena in different topologies at fine resolutions.
We test the model on a set of challenging downstream tasks namely: Autoregressive rollout forecasting, Downscaling, Gravity wave flux parameterization, and Extreme events estimation.
arXiv Detail & Related papers (2024-09-20T15:53:17Z) - How to Estimate Model Transferability of Pre-Trained Speech Models? [84.11085139766108]
"Score-based assessment" framework for estimating transferability of pre-trained speech models.
We leverage upon two representation theories, Bayesian likelihood estimation and optimal transport, to generate rank scores for the PSM candidates.
Our framework efficiently computes transferability scores without actual fine-tuning of candidate models or layers.
arXiv Detail & Related papers (2023-06-01T04:52:26Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Comparison of Traditional and Hybrid Time Series Models for Forecasting
COVID-19 Cases [0.5849513679510832]
The coronavirus outbreak of December 2019 has already infected millions all over the world and continues to spread on.
Just when the curve of the outbreak had started to flatten, many countries have again started to witness a rise in cases.
A thorough analysis of time-series forecasting models is therefore required to equip state authorities and health officials with immediate strategies for future times.
arXiv Detail & Related papers (2021-05-05T14:56:27Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - A Spatial-Temporal Graph Based Hybrid Infectious Disease Model with
Application to COVID-19 [3.785123406103385]
As the COVID-19 pandemic evolves, reliable prediction plays an important role for policy making.
The data-driven machine learning models such as RNN can suffer in case of limited time series data such as COVID-19.
We combine SEIR and RNN on a graph structure to develop a hybrid-temporal model to achieve both accuracy and efficiency in training and forecasting.
arXiv Detail & Related papers (2020-10-18T19:34:54Z) - Deep Distributional Time Series Models and the Probabilistic Forecasting
of Intraday Electricity Prices [0.0]
We propose two approaches to constructing deep time series probabilistic models.
The first is where the output layer of the ESN has disturbances and a shrinkage prior for additional regularization.
The second approach employs the implicit copula of an ESN with Gaussian disturbances, which is a deep copula process on the feature space.
arXiv Detail & Related papers (2020-10-05T08:02:29Z) - Adaptive County Level COVID-19 Forecast Models: Analysis and Improvement [1.8899300124593645]
We adapt the state and county level model, TDEFSI-LONLY, to national and county level COVID-19 data.
We show that this model poorly forecasts the current pandemic.
We propose an alternate forecast model, it County Level Epidemiological Inference Recurrent Network (alg) that trains an LSTM backbone on national confirmed cases to learn a low dimensional time pattern.
arXiv Detail & Related papers (2020-06-16T17:20:54Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
We present a two-phase framework for finding helpful models for a current application.
In the upload phase, when a model is uploading into the pool, we construct a reduced kernel mean embedding (RKME) as a specification for the model.
Then in the deployment phase, the relatedness of the current task and pre-trained models will be measured based on the value of the RKME specification.
arXiv Detail & Related papers (2020-01-20T15:15:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.