Lag Selection for Univariate Time Series Forecasting using Deep Learning: An Empirical Study
- URL: http://arxiv.org/abs/2405.11237v1
- Date: Sat, 18 May 2024 09:31:54 GMT
- Title: Lag Selection for Univariate Time Series Forecasting using Deep Learning: An Empirical Study
- Authors: José Leites, Vitor Cerqueira, Carlos Soares,
- Abstract summary: We focus on deep learning methods trained in a global approach, i.e., on datasets comprising multiple univariate time series.
The results indicate that the lag size is a relevant parameter for accurate forecasts.
Cross-validation approaches show the best performance for lag selection.
- Score: 0.393259574660092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most forecasting methods use recent past observations (lags) to model the future values of univariate time series. Selecting an adequate number of lags is important for training accurate forecasting models. Several approaches and heuristics have been devised to solve this task. However, there is no consensus about what the best approach is. Besides, lag selection procedures have been developed based on local models and classical forecasting techniques such as ARIMA. We bridge this gap in the literature by carrying out an extensive empirical analysis of different lag selection methods. We focus on deep learning methods trained in a global approach, i.e., on datasets comprising multiple univariate time series. The experiments were carried out using three benchmark databases that contain a total of 2411 univariate time series. The results indicate that the lag size is a relevant parameter for accurate forecasts. In particular, excessively small or excessively large lag sizes have a considerable negative impact on forecasting performance. Cross-validation approaches show the best performance for lag selection, but this performance is comparable with simple heuristics.
Related papers
- Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - RobustTSF: Towards Theory and Design of Robust Time Series Forecasting
with Anomalies [28.59935971037066]
We develop methods to automatically learn a robust forecasting model from contaminated data.
Based on our analyses, we propose a simple and efficient algorithm to learn a robust forecasting model.
arXiv Detail & Related papers (2024-02-03T05:13:09Z) - Contrastive Difference Predictive Coding [79.74052624853303]
We introduce a temporal difference version of contrastive predictive coding that stitches together pieces of different time series data to decrease the amount of data required to learn predictions of future events.
We apply this representation learning method to derive an off-policy algorithm for goal-conditioned RL.
arXiv Detail & Related papers (2023-10-31T03:16:32Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
It is a common practice to evaluate multiple methods and choose one of these methods or an ensemble for producing the best forecasts.
We propose a framework for forecasting short high-dimensional time series data by combining low-rank temporal matrix factorization and optimal model selection on latent time series.
arXiv Detail & Related papers (2021-12-15T11:39:21Z) - Model Selection for Time Series Forecasting: Empirical Analysis of
Different Estimators [1.6328866317851185]
We compare a set of estimation methods for model selection in time series forecasting tasks.
We empirically found that the accuracy of the estimators for selecting the best solution is low.
Some factors, such as the sample size, are important in the relative performance of the estimators.
arXiv Detail & Related papers (2021-04-01T16:08:25Z) - The Effectiveness of Discretization in Forecasting: An Empirical Study
on Neural Time Series Models [15.281725756608981]
We investigate the effect of data input and output transformations on the predictive performance of neural forecasting architectures.
We find that binning almost always improves performance compared to using normalized real-valued inputs.
arXiv Detail & Related papers (2020-05-20T15:09:28Z) - Drift-Adjusted And Arbitrated Ensemble Framework For Time Series
Forecasting [0.491574468325115]
Time series forecasting is a challenging problem due to complex and evolving nature of time series data.
No one method is universally effective for all kinds of time series data.
We propose a re-weighting based method to adjust the assigned weights to various forecasters in order to account for such distribution-drift.
arXiv Detail & Related papers (2020-03-16T10:21:37Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.