Few-Shot API Attack Detection: Overcoming Data Scarcity with GAN-Inspired Learning
- URL: http://arxiv.org/abs/2405.11258v1
- Date: Sat, 18 May 2024 11:10:45 GMT
- Title: Few-Shot API Attack Detection: Overcoming Data Scarcity with GAN-Inspired Learning
- Authors: Udi Aharon, Revital Marbel, Ran Dubin, Amit Dvir, Chen Hajaj,
- Abstract summary: This paper proposes a novel few-shot detection approach motivated by Natural Language Processing (NLP) and advanced Generative Adrialversa Network (GAN)-inspired techniques.
Our method enhances the contextual understanding of API requests, leading to improved anomaly detection compared to traditional methods.
- Score: 9.035212370386846
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Web applications and APIs face constant threats from malicious actors seeking to exploit vulnerabilities for illicit gains. These threats necessitate robust anomaly detection systems capable of identifying malicious API traffic efficiently despite limited and diverse datasets. This paper proposes a novel few-shot detection approach motivated by Natural Language Processing (NLP) and advanced Generative Adversarial Network (GAN)-inspired techniques. Leveraging state-of-the-art Transformer architectures, particularly RoBERTa, our method enhances the contextual understanding of API requests, leading to improved anomaly detection compared to traditional methods. We showcase the technique's versatility by demonstrating its effectiveness with both Out-of-Distribution (OOD) and Transformer-based binary classification methods on two distinct datasets: CSIC 2010 and ATRDF 2023. Our evaluations reveal consistently enhanced or, at worst, equivalent detection rates across various metrics in most vectors, highlighting the promise of our approach for improving API security.
Related papers
- A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion [2.3039261241391586]
This study employs the minhash algorithm to convert binary files of malware into grayscale images.
The study utilizes IDA Pro to decompile and extract opcode sequences, applying N-gram and tf-idf algorithms for feature vectorization.
A CNN-BiLSTM fusion model is designed to simultaneously process image features and opcode sequences, enhancing classification performance.
arXiv Detail & Related papers (2024-10-12T07:10:44Z) - A Classification-by-Retrieval Framework for Few-Shot Anomaly Detection to Detect API Injection Attacks [9.693391036125908]
We propose a novel unsupervised few-shot anomaly detection framework composed of two main parts.
First, we train a dedicated generic language model for API based on FastText embedding.
Next, we use Approximate Nearest Neighbor search in a classification-by-retrieval approach.
arXiv Detail & Related papers (2024-05-18T10:15:31Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - A Method for Network Intrusion Detection Using Flow Sequence and BERT Framework [0.9208007322096533]
This research aims to explore the possibility of using sequences of flows to improve the domain adaptation capability of network intrusion detection systems.
Our proposal employs natural language processing techniques and Bidirectional Representations from Transformers framework.
Early empirical results show that our approach has improved domain adaptation capability compared to previous approaches.
arXiv Detail & Related papers (2023-10-26T03:56:40Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Reducing False Alarms in Video Surveillance by Deep Feature Statistical
Modeling [16.311150636417256]
We develop a method-a weakly supervised a-contrario validation process, based on high dimensional statistical modeling of deep features.
Experimental results reveal that the proposed a-contrario validation is able to largely reduce the number of false alarms at both pixel and object levels.
arXiv Detail & Related papers (2023-07-09T12:37:17Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
This paper proposes the first benchmark framework for MGT detection against powerful large language models (LLMs)
We show that a larger number of words in general leads to better performance and most detection methods can achieve similar performance with much fewer training samples.
Our findings indicate that the model-based detection methods still perform well in the text attribution task.
arXiv Detail & Related papers (2023-03-26T21:12:36Z) - Towards an Awareness of Time Series Anomaly Detection Models'
Adversarial Vulnerability [21.98595908296989]
We demonstrate that the performance of state-of-the-art anomaly detection methods is degraded substantially by adding only small adversarial perturbations to the sensor data.
We use different scoring metrics such as prediction errors, anomaly, and classification scores over several public and private datasets.
We demonstrate, for the first time, the vulnerabilities of anomaly detection systems against adversarial attacks.
arXiv Detail & Related papers (2022-08-24T01:55:50Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.