Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework
- URL: http://arxiv.org/abs/2309.01099v1
- Date: Sun, 3 Sep 2023 06:35:07 GMT
- Title: Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework
- Authors: Zhu Liu, Zihang Chen, Jinyuan Liu, Long Ma, Xin Fan, Risheng Liu
- Abstract summary: We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
- Score: 61.34862133870934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection of small infrared targets against blurred and cluttered
backgrounds has remained an enduring challenge. In recent years, learning-based
schemes have become the mainstream methodology to establish the mapping
directly. However, these methods are susceptible to the inherent complexities
of changing backgrounds and real-world disturbances, leading to unreliable and
compromised target estimations. In this work, we propose a bi-level adversarial
framework to promote the robustness of detection in the presence of distinct
corruptions. We first propose a bi-level optimization formulation to introduce
dynamic adversarial learning. Specifically, it is composited by the learnable
generation of corruptions to maximize the losses as the lower-level objective
and the robustness promotion of detectors as the upper-level one. We also
provide a hierarchical reinforced learning strategy to discover the most
detrimental corruptions and balance the performance between robustness and
accuracy. To better disentangle the corruptions from salient features, we also
propose a spatial-frequency interaction network for target detection. Extensive
experiments demonstrate our scheme remarkably improves 21.96% IOU across a wide
array of corruptions and notably promotes 4.97% IOU on the general benchmark.
The source codes are available at https://github.com/LiuZhu-CV/BALISTD.
Related papers
- Pick of the Bunch: Detecting Infrared Small Targets Beyond Hit-Miss Trade-Offs via Selective Rank-Aware Attention [22.580497586948198]
Infrared small target detection faces the inherent challenge of precisely localizing dim targets amidst complex background clutter.
We propose SeRankDet, a deep network that achieves high accuracy beyond the conventional hit-miss trade-off.
arXiv Detail & Related papers (2024-08-07T12:10:32Z) - Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection [15.605122893098981]
This study introduces a Sparse Differential Directionality prior (SDD) framework.
We leverage the distinct directional characteristics of targets to differentiate them from the background.
We further enhance target detectability with a saliency coherence strategy.
A Proximal Alternating Minimization-based (PAM) algorithm efficiently solves our proposed model.
arXiv Detail & Related papers (2024-07-22T04:32:43Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
Small object detection remains unsatisfactory due to limited characteristics and high density and mutual overlap.
We propose methods enhancing sampling within an end-to-end framework.
Our model demonstrates a significant enhancement, achieving a 2.9% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset.
arXiv Detail & Related papers (2024-05-17T04:37:44Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - One-Stage Cascade Refinement Networks for Infrared Small Target
Detection [21.28595135499812]
Single-frame InfraRed Small Target (SIRST) detection has been a challenging task due to a lack of inherent characteristics.
We present a new research benchmark for infrared small target detection consisting of the SIRST-V2 dataset of real-world, high-resolution single-frame targets.
arXiv Detail & Related papers (2022-12-16T13:37:23Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain.
We present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection.
Our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
arXiv Detail & Related papers (2021-03-10T16:45:22Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.