論文の概要: Diffusion Model Driven Test-Time Image Adaptation for Robust Skin Lesion Classification
- arxiv url: http://arxiv.org/abs/2405.11289v1
- Date: Sat, 18 May 2024 13:28:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 18:28:33.487331
- Title: Diffusion Model Driven Test-Time Image Adaptation for Robust Skin Lesion Classification
- Title(参考訳): ロバスト皮膚病変分類のための拡散モデル駆動テスト時間画像適応
- Authors: Ming Hu, Siyuan Yan, Peng Xia, Feilong Tang, Wenxue Li, Peibo Duan, Lin Zhang, Zongyuan Ge,
- Abstract要約: テストデータ上でのモデルの精度を高めるためのテスト時間画像適応手法を提案する。
拡散モデルを用いて、対象の試験画像をソース領域に投影して修正する。
私たちの手法は、さまざまな汚職、アーキテクチャ、データレシエーションにおいて、堅牢性をより堅牢にします。
- 参考スコア(独自算出の注目度): 24.08402880603475
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning-based diagnostic systems have demonstrated potential in skin disease diagnosis. However, their performance can easily degrade on test domains due to distribution shifts caused by input-level corruptions, such as imaging equipment variability, brightness changes, and image blur. This will reduce the reliability of model deployment in real-world scenarios. Most existing solutions focus on adapting the source model through retraining on different target domains. Although effective, this retraining process is sensitive to the amount of data and the hyperparameter configuration for optimization. In this paper, we propose a test-time image adaptation method to enhance the accuracy of the model on test data by simultaneously updating and predicting test images. We modify the target test images by projecting them back to the source domain using a diffusion model. Specifically, we design a structure guidance module that adds refinement operations through low-pass filtering during reverse sampling, regularizing the diffusion to preserve structural information. Additionally, we introduce a self-ensembling scheme automatically adjusts the reliance on adapted and unadapted inputs, enhancing adaptation robustness by rejecting inappropriate generative modeling results. To facilitate this study, we constructed the ISIC2019-C and Dermnet-C corruption robustness evaluation benchmarks. Extensive experiments on the proposed benchmarks demonstrate that our method makes the classifier more robust across various corruptions, architectures, and data regimes. Our datasets and code will be available at \url{https://github.com/minghu0830/Skin-TTA_Diffusion}.
- Abstract(参考訳): 深層学習に基づく診断システムは皮膚疾患の診断に可能性を示している。
しかし, 撮像装置のバラツキ, 明るさ変化, 画像のぼやけなど, 入力レベルの劣化による分布変化により, テスト領域では容易に性能が低下する。
これにより、実際のシナリオにおけるモデルデプロイメントの信頼性が低下する。
既存のソリューションのほとんどは、異なるターゲットドメインで再トレーニングすることで、ソースモデルを適応することに集中しています。
有効ではあるが、この再トレーニングプロセスは、最適化のためのデータ量とハイパーパラメータ設定に敏感である。
本稿では,テスト画像の同時更新と予測により,テストデータ上でのモデルの精度を向上させるテスト時間画像適応手法を提案する。
拡散モデルを用いて、対象の試験画像をソース領域に投影して修正する。
具体的には,逆サンプリング時の低域フィルタによる微細化操作を付加する構造誘導モジュールを設計し,構造情報の保存のために拡散を規則化する。
さらに,適応入力と適応しない入力への依存を自動的に調整し,不適切な生成モデリング結果の拒絶による適応ロバスト性の向上を図る。
そこで本研究では,ISIC2019-CとDermnet-Cの耐食性評価ベンチマークを構築した。
提案手法は, 様々な汚職, アーキテクチャ, データ構造において, 分類器をより堅牢にすることを示す。
データセットとコードは、 \url{https://github.com/minghu0830/Skin-TTA_Diffusion}で公開されます。
関連論文リスト
- Bring the Power of Diffusion Model to Defect Detection [0.0]
拡散確率モデル(DDPM)は,特徴リポジトリとして構築する認知過程の特徴を抽出するために事前訓練される。
待ち行列特徴を再構成してフィルタして高次元DDPM特徴を得る。
実験結果から,本手法はいくつかの産業データセット上での競合的な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-08-25T14:28:49Z) - Diffusion-TTA: Test-time Adaptation of Discriminative Models via
Generative Feedback [97.0874638345205]
生成モデルは、識別モデルのための優れたテストタイムアダプタになり得る。
提案手法であるDiffusion-TTAは,事前学習した判別モデルを,テストセットの各未学習例に適応させる。
拡散-TTAは,様々な大規模事前学習型判別モデルの精度を著しく向上させることを示した。
論文 参考訳(メタデータ) (2023-11-27T18:59:53Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
特に、異なるResNet、VGGNetアーキテクチャをバックボーンとして使用するRetinaNetモデルをトレーニングする。
そこで本研究では,異なるモデルからの出力予測を組み合わせることで,欠陥の分類と検出に優れた性能を実現するための選好に基づくアンサンブル戦略を提案する。
論文 参考訳(メタデータ) (2022-06-20T16:34:11Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
ソースモデルをテスト時にターゲットデータに適応させることは、データシフト問題に対する効率的な解決策である。
本稿では、各畳み込みブロックに適応バッチ正規化層を設けるAdaptive UNetという新しいフレームワークを提案する。
テスト期間中、モデルは新しいテストイメージのみを取り込み、ドメインコードを生成して、テストデータに従ってソースモデルの特徴を適応させる。
論文 参考訳(メタデータ) (2022-03-10T18:51:29Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
テスト時間ロバスト化の問題、すなわちモデルロバスト性を改善するためにテストインプットを用いて検討する。
最近の先行研究ではテスト時間適応法が提案されているが、それぞれ追加の仮定を導入している。
モデルが確率的で適応可能な任意のテスト環境で使用できるシンプルなアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-18T17:55:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。