Smooth Kolmogorov Arnold networks enabling structural knowledge representation
- URL: http://arxiv.org/abs/2405.11318v2
- Date: Mon, 27 May 2024 09:32:35 GMT
- Title: Smooth Kolmogorov Arnold networks enabling structural knowledge representation
- Authors: Moein E. Samadi, Younes Müller, Andreas Schuppert,
- Abstract summary: Kolmogorov-Arnold Networks (KANs) offer an efficient and interpretable alternative to traditional multi-layer perceptron (MLP) architectures.
By leveraging inherent structural knowledge, KANs may reduce the data required for training and mitigate the risk of generating hallucinated predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kolmogorov-Arnold Networks (KANs) offer an efficient and interpretable alternative to traditional multi-layer perceptron (MLP) architectures due to their finite network topology. However, according to the results of Kolmogorov and Vitushkin, the representation of generic smooth functions by KAN implementations using analytic functions constrained to a finite number of cutoff points cannot be exact. Hence, the convergence of KAN throughout the training process may be limited. This paper explores the relevance of smoothness in KANs, proposing that smooth, structurally informed KANs can achieve equivalence to MLPs in specific function classes. By leveraging inherent structural knowledge, KANs may reduce the data required for training and mitigate the risk of generating hallucinated predictions, thereby enhancing model reliability and performance in computational biomedicine.
Related papers
- Low Tensor-Rank Adaptation of Kolmogorov--Arnold Networks [70.06682043272377]
Kolmogorov--Arnold networks (KANs) have demonstrated their potential as an alternative to multi-layer perceptions (MLPs) in various domains.
We develop low tensor-rank adaptation (LoTRA) for fine-tuning KANs.
We explore the application of LoTRA for efficiently solving various partial differential equations (PDEs) by fine-tuning KANs.
arXiv Detail & Related papers (2025-02-10T04:57:07Z) - Free-Knots Kolmogorov-Arnold Network: On the Analysis of Spline Knots and Advancing Stability [16.957071012748454]
Kolmogorov-Arnold Neural Networks (KANs) have gained significant attention in the machine learning community.
However, their implementation often suffers from poor training stability and heavy trainable parameter.
In this work, we analyze the behavior of KANs through the lens of spline knots and derive the lower and upper bound for the number of knots in B-spline-based KANs.
arXiv Detail & Related papers (2025-01-16T04:12:05Z) - PRKAN: Parameter-Reduced Kolmogorov-Arnold Networks [47.947045173329315]
Kolmogorov-Arnold Networks (KANs) represent an innovation in neural network architectures.
KANs offer a compelling alternative to Multi-Layer Perceptrons (MLPs) in models such as CNNs, RecurrentReduced Networks (RNNs) and Transformers.
This paper introduces PRKANs, which employ several methods to reduce the parameter count in layers, making them comparable to Neural M layers.
arXiv Detail & Related papers (2025-01-13T03:07:39Z) - A Survey on Kolmogorov-Arnold Network [0.0]
Review explores the theoretical foundations, evolution, applications, and future potential of Kolmogorov-Arnold Networks (KAN)
KANs distinguish themselves from traditional neural networks by using learnable, spline- parameterized functions instead of fixed activation functions.
This paper highlights KAN's role in modern neural architectures and outlines future directions to improve its computational efficiency, interpretability, and scalability in data-intensive applications.
arXiv Detail & Related papers (2024-11-09T05:54:17Z) - Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KANs) are promising alternatives to Multi-Layer Perceptrons (MLPs)
KANs align closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability.
Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy.
arXiv Detail & Related papers (2024-10-02T22:56:00Z) - F-KANs: Federated Kolmogorov-Arnold Networks [3.8277268808551512]
We present an innovative federated learning (FL) approach that utilizes Kolmogorov-Arnold Networks (KANs) for classification tasks.
The study evaluates the performance of federated KANs compared to traditional Multi-Layer Perceptrons (MLPs) classification task.
arXiv Detail & Related papers (2024-07-29T15:28:26Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KANs) reshape the neural network learning via the stack of non-linear learnable activation functions.
We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN.
We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures.
arXiv Detail & Related papers (2024-06-05T04:13:03Z) - Chebyshev Polynomial-Based Kolmogorov-Arnold Networks: An Efficient Architecture for Nonlinear Function Approximation [0.0]
This paper presents the Chebyshev Kolmogorov-Arnold Network (Chebyshev KAN), a new neural network architecture inspired by the Kolmogorov-Arnold theorem.
By utilizing learnable functions parametrized by Chebyshevs on the network's edges, Chebyshev KANs enhance flexibility, efficiency, and interpretability in function approximation tasks.
arXiv Detail & Related papers (2024-05-12T07:55:43Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
We design a predictive layer for structured-output prediction (SOP)
It can be plugged into any neural network guaranteeing its predictions are consistent with a set of predefined symbolic constraints.
Our Semantic Probabilistic Layer (SPL) can model intricate correlations, and hard constraints, over a structured output space.
arXiv Detail & Related papers (2022-06-01T12:02:38Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
We study a constraint-based representation of neural network architectures.
We investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints.
arXiv Detail & Related papers (2020-02-18T16:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.