Cooperative Multi-agent Approach for Automated Computer Game Testing
- URL: http://arxiv.org/abs/2405.11347v1
- Date: Sat, 18 May 2024 17:31:26 GMT
- Title: Cooperative Multi-agent Approach for Automated Computer Game Testing
- Authors: Samira Shirzadeh-hajimahmood, I. S. W. B. Prasteya, Mehdi Dastani, Frank Dignum,
- Abstract summary: Many games nowadays are multi-player. This opens up an interesting possibility to deploy multiple cooperative test agents to test such a game.
This paper offers a cooperative multi-agent testing approach and a study of its performance based on a case study on a 3D game called Lab Recruits.
- Score: 1.4931265249949526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated testing of computer games is a challenging problem, especially when lengthy scenarios have to be tested. Automating such a scenario boils down to finding the right sequence of interactions given an abstract description of the scenario. Recent works have shown that an agent-based approach works well for the purpose, e.g. due to agents' reactivity, hence enabling a test agent to immediately react to game events and changing state. Many games nowadays are multi-player. This opens up an interesting possibility to deploy multiple cooperative test agents to test such a game, for example to speed up the execution of multiple testing tasks. This paper offers a cooperative multi-agent testing approach and a study of its performance based on a case study on a 3D game called Lab Recruits.
Related papers
- PlayTest: A Gamified Test Generator for Games [11.077232808482128]
Playtest transforms the tiring testing process into a competitive game with a purpose.
We envision the use of Playtest to crowdsource the task of testing games by giving players access to the respective games through our tool in the playtesting phases.
arXiv Detail & Related papers (2023-10-30T10:14:27Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgents is an innovative framework that adaptively generates and coordinates multiple specialized agents to build an AI team according to different tasks.
Our experiments on various benchmarks demonstrate that AutoAgents generates more coherent and accurate solutions than the existing multi-agent methods.
arXiv Detail & Related papers (2023-09-29T14:46:30Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Preference-conditioned Pixel-based AI Agent For Game Testing [1.5059676044537105]
Game-testing AI agents that learn by interaction with the environment have the potential to mitigate these challenges.
This paper proposes an agent design that mainly depends on pixel-based state observations while exploring the environment conditioned on a user's preference.
Our agent significantly outperforms state-of-the-art pixel-based game testing agents over exploration coverage and test execution quality when evaluated on a complex open-world environment resembling many aspects of real AAA games.
arXiv Detail & Related papers (2023-08-18T04:19:36Z) - Heterogeneous Embodied Multi-Agent Collaboration [21.364827833498254]
Heterogeneous multi-agent tasks are common in real-world scenarios.
We propose the heterogeneous multi-agent tidying-up task, in which multiple heterogeneous agents collaborate to detect misplaced objects and place them in reasonable locations.
We propose the hierarchical decision model based on misplaced object detection, reasonable receptacle prediction, as well as the handshake-based group communication mechanism.
arXiv Detail & Related papers (2023-07-26T04:33:05Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
Testing video games is an increasingly difficult task as traditional methods fail to scale with growing software systems.
We present SUPERNOVA, a system responsible for test selection and defect prevention while also functioning as an automation hub.
The direct impact of this has been observed to be a reduction in 55% or more testing hours for an undisclosed sports game title.
arXiv Detail & Related papers (2022-03-10T00:47:46Z) - TiKick: Toward Playing Multi-agent Football Full Games from Single-agent
Demonstrations [31.596018856092513]
Tikick is the first learning-based AI system that can take over the multi-agent Google Research Football full game.
To the best of our knowledge, Tikick is the first learning-based AI system that can take over the multi-agent Google Research Football full game.
arXiv Detail & Related papers (2021-10-09T08:34:58Z) - An Empirical Study on the Generalization Power of Neural Representations
Learned via Visual Guessing Games [79.23847247132345]
This work investigates how well an artificial agent can benefit from playing guessing games when later asked to perform on novel NLP downstream tasks such as Visual Question Answering (VQA)
We propose two ways to exploit playing guessing games: 1) a supervised learning scenario in which the agent learns to mimic successful guessing games and 2) a novel way for an agent to play by itself, called Self-play via Iterated Experience Learning (SPIEL)
arXiv Detail & Related papers (2021-01-31T10:30:48Z) - Multi-Agent Collaboration via Reward Attribution Decomposition [75.36911959491228]
We propose Collaborative Q-learning (CollaQ) that achieves state-of-the-art performance in the StarCraft multi-agent challenge.
CollaQ is evaluated on various StarCraft Attribution maps and shows that it outperforms existing state-of-the-art techniques.
arXiv Detail & Related papers (2020-10-16T17:42:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.