On Robust Reinforcement Learning with Lipschitz-Bounded Policy Networks
- URL: http://arxiv.org/abs/2405.11432v2
- Date: Fri, 30 Aug 2024 07:37:25 GMT
- Title: On Robust Reinforcement Learning with Lipschitz-Bounded Policy Networks
- Authors: Nicholas H. Barbara, Ruigang Wang, Ian R. Manchester,
- Abstract summary: We show that policy networks with smaller Lipschitz bounds are more robust to disturbances, random noise, and targeted adversarial attacks.
We find that the widely-used method of spectral normalization is too conservative and severely impacts clean performance.
- Score: 1.1060425537315086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a study of robust policy networks in deep reinforcement learning. We investigate the benefits of policy parameterizations that naturally satisfy constraints on their Lipschitz bound, analyzing their empirical performance and robustness on two representative problems: pendulum swing-up and Atari Pong. We illustrate that policy networks with smaller Lipschitz bounds are more robust to disturbances, random noise, and targeted adversarial attacks than unconstrained policies composed of vanilla multi-layer perceptrons or convolutional neural networks. However, the structure of the Lipschitz layer is important. We find that the widely-used method of spectral normalization is too conservative and severely impacts clean performance, whereas more expressive Lipschitz layers such as the recently-proposed Sandwich layer can achieve improved robustness without sacrificing clean performance.
Related papers
- Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted
Activations [52.031701581294804]
Lipschitz bounds for neural networks can be computed with upper time preservation guarantees.
Our paper bridges the gap and extends Lipschitz beyond slope-restricted activation functions.
Our proposed analysis is general and provides a unified approach for estimating $ell$ and $ell_infty$ Lipschitz bounds.
arXiv Detail & Related papers (2024-01-25T09:23:31Z) - A Recipe for Improved Certifiable Robustness [35.04363084213627]
Recent studies have highlighted the potential of Lipschitz-based methods for training certifiably robust neural networks against adversarial attacks.
We provide a more comprehensive evaluation to better uncover the potential of Lipschitz-based certification methods.
arXiv Detail & Related papers (2023-10-04T01:18:59Z) - Efficient Bound of Lipschitz Constant for Convolutional Layers by Gram
Iteration [122.51142131506639]
We introduce a precise, fast, and differentiable upper bound for the spectral norm of convolutional layers using circulant matrix theory.
We show through a comprehensive set of experiments that our approach outperforms other state-of-the-art methods in terms of precision, computational cost, and scalability.
It proves highly effective for the Lipschitz regularization of convolutional neural networks, with competitive results against concurrent approaches.
arXiv Detail & Related papers (2023-05-25T15:32:21Z) - Some Fundamental Aspects about Lipschitz Continuity of Neural Networks [6.576051895863941]
Lipschitz continuity is a crucial functional property of any predictive model.
We examine and characterise the Lipschitz behaviour of Neural Networks.
We show a remarkable fidelity of the lower Lipschitz bound, identify a striking Double Descent trend in both upper and lower bounds to the Lipschitz and explain the intriguing effects of label noise on function smoothness and generalisation.
arXiv Detail & Related papers (2023-02-21T18:59:40Z) - Rethinking Lipschitz Neural Networks for Certified L-infinity Robustness [33.72713778392896]
We study certified $ell_infty$ from a novel perspective of representing Boolean functions.
We develop a unified Lipschitz network that generalizes prior works, and design a practical version that can be efficiently trained.
arXiv Detail & Related papers (2022-10-04T17:55:27Z) - Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural
Networks [77.82638674792292]
Lipschitz constants of neural networks allow for guarantees of robustness in image classification, safety in controller design, and generalizability beyond the training data.
As calculating Lipschitz constants is NP-hard, techniques for estimating Lipschitz constants must navigate the trade-off between scalability and accuracy.
In this work, we significantly push the scalability frontier of a semidefinite programming technique known as LipSDP while achieving zero accuracy loss.
arXiv Detail & Related papers (2022-04-02T11:57:52Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
Certified robustness is a desirable property for deep neural networks in safety-critical applications.
We show that our method consistently outperforms state-of-the-art methods on MNIST and TinyNet datasets.
arXiv Detail & Related papers (2021-11-02T06:44:10Z) - Lipschitz Bounded Equilibrium Networks [3.2872586139884623]
This paper introduces new parameterizations of equilibrium neural networks, i.e. networks defined by implicit equations.
The new parameterization admits a Lipschitz bound during training via unconstrained optimization.
In image classification experiments we show that the Lipschitz bounds are very accurate and improve robustness to adversarial attacks.
arXiv Detail & Related papers (2020-10-05T01:00:40Z) - On Lipschitz Regularization of Convolutional Layers using Toeplitz
Matrix Theory [77.18089185140767]
Lipschitz regularity is established as a key property of modern deep learning.
computing the exact value of the Lipschitz constant of a neural network is known to be NP-hard.
We introduce a new upper bound for convolutional layers that is both tight and easy to compute.
arXiv Detail & Related papers (2020-06-15T13:23:34Z) - Deep Reinforcement Learning with Robust and Smooth Policy [90.78795857181727]
We propose to learn a smooth policy that behaves smoothly with respect to states.
We develop a new framework -- textbfSmooth textbfRegularized textbfReinforcement textbfLearning ($textbfSR2textbfL$), where the policy is trained with smoothness-inducing regularization.
Such regularization effectively constrains the search space, and enforces smoothness in the learned policy.
arXiv Detail & Related papers (2020-03-21T00:10:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.