A GAN-Based Data Poisoning Attack Against Federated Learning Systems and Its Countermeasure
- URL: http://arxiv.org/abs/2405.11440v2
- Date: Tue, 21 May 2024 12:52:38 GMT
- Title: A GAN-Based Data Poisoning Attack Against Federated Learning Systems and Its Countermeasure
- Authors: Wei Sun, Bo Gao, Ke Xiong, Yuwei Wang,
- Abstract summary: This paper presents a new data poisoning attack model named VagueGAN.
VagueGAN can generate seemingly legitimate but noisy poisoned data by taking advantage of generative adversarial network (GAN) variants.
Our attack method is generally much more stealthy as well as more effective in degrading FL performance with low complexity.
- Score: 17.975736855580674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a distributed machine learning paradigm, federated learning (FL) is collaboratively carried out on privately owned datasets but without direct data access. Although the original intention is to allay data privacy concerns, "available but not visible" data in FL potentially brings new security threats, particularly poisoning attacks that target such "not visible" local data. Initial attempts have been made to conduct data poisoning attacks against FL systems, but cannot be fully successful due to their high chance of causing statistical anomalies. To unleash the potential for truly "invisible" attacks and build a more deterrent threat model, in this paper, a new data poisoning attack model named VagueGAN is proposed, which can generate seemingly legitimate but noisy poisoned data by untraditionally taking advantage of generative adversarial network (GAN) variants. Capable of manipulating the quality of poisoned data on demand, VagueGAN enables to trade-off attack effectiveness and stealthiness. Furthermore, a cost-effective countermeasure named Model Consistency-Based Defense (MCD) is proposed to identify GAN-poisoned data or models after finding out the consistency of GAN outputs. Extensive experiments on multiple datasets indicate that our attack method is generally much more stealthy as well as more effective in degrading FL performance with low complexity. Our defense method is also shown to be more competent in identifying GAN-poisoned data or models. The source codes are publicly available at \href{https://github.com/SSssWEIssSS/VagueGAN-Data-Poisoning-Attack-and-Its-Countermeasure}{https://github.com/SSssWEIssSS/VagueGAN-Data-Poisoning-Attack-and-Its-Countermeasure}.
Related papers
- Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
Deep neural networks are proven to be vulnerable to data poisoning attacks.
It is quite beneficial and challenging to detect poisoned samples from a mixed dataset.
We propose an Iterative Filtering approach for UEs identification.
arXiv Detail & Related papers (2024-08-15T13:26:13Z) - Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning [4.475514208635884]
This study systematically profiles the (in)feasibility of learning for privacy-preserving cyber threat detection in terms of effectiveness, byzantine resilience, and efficiency.
It shows that FL-trained detection models can achieve a performance that is comparable to centrally trained counterparts.
Under a realistic threat model, FL turns out to be adversary-resistant to attacks of both data poisoning and model poisoning.
arXiv Detail & Related papers (2024-04-08T01:16:56Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
Federated Learning (FL) is a collaborative learning paradigm enabling participants to collectively train a shared machine learning model.
Current FL defense strategies against data poisoning attacks either involve a trade-off between accuracy and robustness.
We present FedZZ, which harnesses a zone-based deviating update (ZBDU) mechanism to effectively counter data poisoning attacks in FL.
arXiv Detail & Related papers (2024-04-05T14:37:49Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
We argue for a realistic MIA setting that assumes the attacker has some knowledge of the underlying data distribution.
We propose DOMIAS, a density-based MIA model that aims to infer membership by targeting local overfitting of the generative model.
arXiv Detail & Related papers (2023-02-24T11:27:39Z) - Try to Avoid Attacks: A Federated Data Sanitization Defense for
Healthcare IoMT Systems [4.024567343465081]
The distribution of IoMT has the risk of protection from data poisoning attacks.
Poisoned data can be fabricated by falsifying medical data.
This paper introduces a Federated Data Sanitization Defense, a novel approach to protect the system from data poisoning attacks.
arXiv Detail & Related papers (2022-11-03T05:21:39Z) - Autoregressive Perturbations for Data Poisoning [54.205200221427994]
Data scraping from social media has led to growing concerns regarding unauthorized use of data.
Data poisoning attacks have been proposed as a bulwark against scraping.
We introduce autoregressive (AR) poisoning, a method that can generate poisoned data without access to the broader dataset.
arXiv Detail & Related papers (2022-06-08T06:24:51Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN) models have vulnerabilities related to security concerns.
Data poisoning-enabled perturbation attacks are complex adversarial ones that inject false data into models.
We propose an attack-agnostic-based defense method for mitigating their influence.
arXiv Detail & Related papers (2020-12-08T21:25:44Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.