Cross-Domain Knowledge Distillation for Low-Resolution Human Pose Estimation
- URL: http://arxiv.org/abs/2405.11448v1
- Date: Sun, 19 May 2024 04:57:17 GMT
- Title: Cross-Domain Knowledge Distillation for Low-Resolution Human Pose Estimation
- Authors: Zejun Gu, Zhong-Qiu Zhao, Henghui Ding, Hao Shen, Zhao Zhang, De-Shuang Huang,
- Abstract summary: In practical applications of human pose estimation, low-resolution inputs frequently occur, and existing state-of-the-art models perform poorly with low-resolution images.
This work focuses on boosting the performance of low-resolution models by distilling knowledge from a high-resolution model.
- Score: 31.970739018426645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practical applications of human pose estimation, low-resolution inputs frequently occur, and existing state-of-the-art models perform poorly with low-resolution images. This work focuses on boosting the performance of low-resolution models by distilling knowledge from a high-resolution model. However, we face the challenge of feature size mismatch and class number mismatch when applying knowledge distillation to networks with different input resolutions. To address this issue, we propose a novel cross-domain knowledge distillation (CDKD) framework. In this framework, we construct a scale-adaptive projector ensemble (SAPE) module to spatially align feature maps between models of varying input resolutions. It adopts a projector ensemble to map low-resolution features into multiple common spaces and adaptively merges them based on multi-scale information to match high-resolution features. Additionally, we construct a cross-class alignment (CCA) module to solve the problem of the mismatch of class numbers. By combining an easy-to-hard training (ETHT) strategy, the CCA module further enhances the distillation performance. The effectiveness and efficiency of our approach are demonstrated by extensive experiments on two common benchmark datasets: MPII and COCO. The code is made available in supplementary material.
Related papers
- HQDec: Self-Supervised Monocular Depth Estimation Based on a
High-Quality Decoder [14.67433946077953]
We propose a high-quality decoder (HQDec) to recover scene depths.
The code and models will be publicly available at hrefhttps://github.com/fwucas/HQDecHQDec.
arXiv Detail & Related papers (2023-05-30T03:03:11Z) - Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation [10.919956120261539]
High-resolution remote sensing (HRS) semantic segmentation extracts key objects from high-resolution coverage areas.
objects of the same category within HRS images show significant differences in scale and shape across diverse geographical environments.
We propose a High-resolution remote sensing network (Hi-ResNet) with efficient network structure designs.
arXiv Detail & Related papers (2023-05-22T03:58:25Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
We propose a Switchable representation learning Framework with Self-Compatibility (SFSC)
SFSC generates a series of compatible sub-models with different capacities through one training process.
SFSC achieves state-of-the-art performance on the evaluated datasets.
arXiv Detail & Related papers (2022-06-16T16:46:32Z) - Coarse-to-Fine Embedded PatchMatch and Multi-Scale Dynamic Aggregation
for Reference-based Super-Resolution [48.093500219958834]
We propose an Accelerated Multi-Scale Aggregation network (AMSA) for Reference-based Super-Resolution.
The proposed AMSA achieves superior performance over state-of-the-art approaches on both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2022-01-12T08:40:23Z) - High Quality Segmentation for Ultra High-resolution Images [72.97958314291648]
We propose the Continuous Refinement Model for the ultra high-resolution segmentation refinement task.
Our proposed method is fast and effective on image segmentation refinement.
arXiv Detail & Related papers (2021-11-29T11:53:06Z) - Multi-Scale Aligned Distillation for Low-Resolution Detection [68.96325141432078]
This paper focuses on boosting the performance of low-resolution models by distilling knowledge from a high- or multi-resolution model.
On several instance-level detection tasks and datasets, the low-resolution models trained via our approach perform competitively with high-resolution models trained via conventional multi-scale training.
arXiv Detail & Related papers (2021-09-14T12:53:35Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame.
Inter- and intra-frames are the key sources for exploiting temporal and spatial information.
We build an effective multi-correspondence aggregation network (MuCAN) for VSR.
arXiv Detail & Related papers (2020-07-23T05:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.