Comparisons Are All You Need for Optimizing Smooth Functions
- URL: http://arxiv.org/abs/2405.11454v1
- Date: Sun, 19 May 2024 05:39:46 GMT
- Title: Comparisons Are All You Need for Optimizing Smooth Functions
- Authors: Chenyi Zhang, Tongyang Li,
- Abstract summary: We show that emphcomparisons are all you need for optimizing smooth functions using derivative-free methods.
In addition, we also give an algorithm for escaping saddle points and reaching an $epsilon$second stationary point.
- Score: 12.097567715078252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When optimizing machine learning models, there are various scenarios where gradient computations are challenging or even infeasible. Furthermore, in reinforcement learning (RL), preference-based RL that only compares between options has wide applications, including reinforcement learning with human feedback in large language models. In this paper, we systematically study optimization of a smooth function $f\colon\mathbb{R}^n\to\mathbb{R}$ only assuming an oracle that compares function values at two points and tells which is larger. When $f$ is convex, we give two algorithms using $\tilde{O}(n/\epsilon)$ and $\tilde{O}(n^{2})$ comparison queries to find an $\epsilon$-optimal solution, respectively. When $f$ is nonconvex, our algorithm uses $\tilde{O}(n/\epsilon^2)$ comparison queries to find an $\epsilon$-approximate stationary point. All these results match the best-known zeroth-order algorithms with function evaluation queries in $n$ dependence, thus suggest that \emph{comparisons are all you need for optimizing smooth functions using derivative-free methods}. In addition, we also give an algorithm for escaping saddle points and reaching an $\epsilon$-second order stationary point of a nonconvex $f$, using $\tilde{O}(n^{1.5}/\epsilon^{2.5})$ comparison queries.
Related papers
- The Computational Complexity of Finding Stationary Points in Non-Convex Optimization [53.86485757442486]
Finding approximate stationary points, i.e., points where the gradient is approximately zero, of non-order but smooth objective functions is a computational problem.
We show that finding approximate KKT points in constrained optimization is reducible to finding approximate stationary points in unconstrained optimization but the converse is impossible.
arXiv Detail & Related papers (2023-10-13T14:52:46Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
We show a proof to show DEAREST requires at most $mathcal O(+sqrtmnLvarepsilon-2)$ first-order oracle (IFO) calls and $mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$ communication rounds.
arXiv Detail & Related papers (2022-10-25T11:37:11Z) - Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient
Oracle Complexity [15.18055488087588]
We give an algorithm that minimizes the above convex formulation to $epsilon$-accuracy in $widetildeO(sum_i=1n d_i log (1 /epsilon))$ gradient computations.
Our main technical contribution is an adaptive procedure to select an $f_i$ term at every iteration via a novel combination of cutting-plane and interior-point methods.
arXiv Detail & Related papers (2022-08-07T20:53:42Z) - Thinking Inside the Ball: Near-Optimal Minimization of the Maximal Loss [41.17536985461902]
We prove an oracle complexity lower bound scaling as $Omega(Nepsilon-2/3)$, showing that our dependence on $N$ is optimal up to polylogarithmic factors.
We develop methods with improved complexity bounds of $tildeO(Nepsilon-2/3 + sqrtNepsilon-8/3)$ in the non-smooth case and $tildeO(Nepsilon-2/3 + sqrtNepsilon-1)$ in
arXiv Detail & Related papers (2021-05-04T21:49:15Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Local Search Algorithms for Rank-Constrained Convex Optimization [7.736462653684946]
We propose greedy and local search algorithms for rank-constrained convex optimization.
We show that if the rank-restricted condition number of $R$ is $kappa$, a solution $A$ with rank $O(r*cdot minkappa log fracR(mathbf0)-R(A*)epsilon, kappa2)$ and $R(A) leq R(A*) + epsilon$ can be recovered, where $A
arXiv Detail & Related papers (2021-01-15T18:52:02Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
We study the problem of agnostic $Q$-learning with function approximation in deterministic systems.
We show that if $delta = Oleft(rho/sqrtdim_Eright)$, then one can find the optimal policy using $Oleft(dim_Eright)$.
arXiv Detail & Related papers (2020-02-17T18:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.