Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient
Oracle Complexity
- URL: http://arxiv.org/abs/2208.03811v1
- Date: Sun, 7 Aug 2022 20:53:42 GMT
- Title: Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient
Oracle Complexity
- Authors: Sally Dong, Haotian Jiang, Yin Tat Lee, Swati Padmanabhan, and
Guanghao Ye
- Abstract summary: We give an algorithm that minimizes the above convex formulation to $epsilon$-accuracy in $widetildeO(sum_i=1n d_i log (1 /epsilon))$ gradient computations.
Our main technical contribution is an adaptive procedure to select an $f_i$ term at every iteration via a novel combination of cutting-plane and interior-point methods.
- Score: 15.18055488087588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many fundamental problems in machine learning can be formulated by the convex
program \[ \min_{\theta\in R^d}\ \sum_{i=1}^{n}f_{i}(\theta), \] where each
$f_i$ is a convex, Lipschitz function supported on a subset of $d_i$
coordinates of $\theta$. One common approach to this problem, exemplified by
stochastic gradient descent, involves sampling one $f_i$ term at every
iteration to make progress. This approach crucially relies on a notion of
uniformity across the $f_i$'s, formally captured by their condition number. In
this work, we give an algorithm that minimizes the above convex formulation to
$\epsilon$-accuracy in $\widetilde{O}(\sum_{i=1}^n d_i \log (1 /\epsilon))$
gradient computations, with no assumptions on the condition number. The
previous best algorithm independent of the condition number is the standard
cutting plane method, which requires $O(nd \log (1/\epsilon))$ gradient
computations. As a corollary, we improve upon the evaluation oracle complexity
for decomposable submodular minimization by Axiotis et al. (ICML 2021). Our
main technical contribution is an adaptive procedure to select an $f_i$ term at
every iteration via a novel combination of cutting-plane and interior-point
methods.
Related papers
- Projection-Free Methods for Stochastic Simple Bilevel Optimization with
Convex Lower-level Problem [16.9187409976238]
We study a class of convex bilevel optimization problems, also known as simple bilevel optimization.
We introduce novel bilevel optimization methods that approximate the solution set of the lower-level problem.
arXiv Detail & Related papers (2023-08-15T02:37:11Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Memory-Constrained Algorithms for Convex Optimization via Recursive
Cutting-Planes [23.94542304111204]
First class of algorithms that provides a positive trade-off between gradient descent and cutting-plane methods in any regime with $epsilonleq 1/sqrt d$.
In the regime $epsilon leq d-Omega(d)$, our algorithm with $p=d$ achieves the information-theoretic optimal memory usage and improves the oracle-complexity of gradient descent.
arXiv Detail & Related papers (2023-06-16T17:00:51Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - The First Optimal Algorithm for Smooth and
Strongly-Convex-Strongly-Concave Minimax Optimization [88.91190483500932]
In this paper, we revisit the smooth and strongly-strongly-concave minimax optimization problem.
Existing state-of-the-art methods do not match lower bound $Omegaleft(sqrtkappa_xkappa_ylog3 (kappa_xkappa_y)logfrac1epsilonright)$.
We fix this fundamental issue by providing the first algorithm with $mathcalOleft( sqrtkappa_xkappa_ylog
arXiv Detail & Related papers (2022-05-11T17:33:07Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Decentralized Stochastic Variance Reduced Extragradient Method [25.21457349137344]
This paper studies decentralized convex-concave minimax optimization problems of the form $min_xmax_y fx,y triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msum
arXiv Detail & Related papers (2022-02-01T16:06:20Z) - Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax
Optimization [47.27237492375659]
We study the bilinearly coupled minimax problem: $min_x max_y f(x) + ytop A x - h(y)$, where $f$ and $h$ are both strongly convex smooth functions.
No known first-order algorithms have hitherto achieved the lower complexity bound of $Omega(sqrtfracL_xmu_x + frac|A|sqrtmu_x,mu_y) log(frac1vareps
arXiv Detail & Related papers (2022-01-19T05:56:19Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
We consider the problem of finding a saddle point for the convex-concave objective $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, where $f$ is a convex function with locally Lipschitz gradient and $g$ is convex and possibly non-smooth.
We propose an adaptive version of the Condat-Vu algorithm, which alternates between primal gradient steps and dual steps.
arXiv Detail & Related papers (2021-10-28T14:19:30Z) - Practical and Parallelizable Algorithms for Non-Monotone Submodular
Maximization with Size Constraint [20.104148319012854]
We present and parallelizable for a submodular function, not necessarily a monotone, with respect to a size constraint.
We improve the best approximation factor achieved by an algorithm that has optimal adaptivity and nearly optimal complexity query to $0.193 - varepsilon$.
arXiv Detail & Related papers (2020-09-03T22:43:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.