Diffusion-Based Hierarchical Image Steganography
- URL: http://arxiv.org/abs/2405.11523v1
- Date: Sun, 19 May 2024 11:29:52 GMT
- Title: Diffusion-Based Hierarchical Image Steganography
- Authors: Youmin Xu, Xuanyu Zhang, Jiwen Yu, Chong Mou, Xiandong Meng, Jian Zhang,
- Abstract summary: Hierarchical Image Steganography is a novel method that enhances the security and capacity of embedding multiple images into a single container.
It exploits the robustness of the Diffusion Model alongside the reversibility of the Flow Model.
The innovative structure can autonomously generate a container image, thereby securely and efficiently concealing multiple images and text.
- Score: 60.69791384893602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Hierarchical Image Steganography, a novel method that enhances the security and capacity of embedding multiple images into a single container using diffusion models. HIS assigns varying levels of robustness to images based on their importance, ensuring enhanced protection against manipulation. It adaptively exploits the robustness of the Diffusion Model alongside the reversibility of the Flow Model. The integration of Embed-Flow and Enhance-Flow improves embedding efficiency and image recovery quality, respectively, setting HIS apart from conventional multi-image steganography techniques. This innovative structure can autonomously generate a container image, thereby securely and efficiently concealing multiple images and text. Rigorous subjective and objective evaluations underscore our advantage in analytical resistance, robustness, and capacity, illustrating its expansive applicability in content safeguarding and privacy fortification.
Related papers
- Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
We introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB)
TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models.
Experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
arXiv Detail & Related papers (2024-09-17T07:52:09Z) - ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
This paper presents an inversion-free portrait stylization framework based on diffusion models that accomplishes content and style feature fusion in merely four sampling steps.
We propose a feature merging strategy to amalgamate redundant features in Consistency Features, thereby reducing the computational load of attention control.
arXiv Detail & Related papers (2024-08-10T08:53:41Z) - Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking [20.320229647850017]
Stable diffusion (SD) models have typically flourished in the field of image synthesis and personalized editing.
The exposure of AI-created content on public platforms could raise both legal and ethical risks.
In this work, we propose a Safe and high-traceable Stable Diffusion framework (namely SafeSD) to adaptive implant the watermarks into the imperceptible structure.
arXiv Detail & Related papers (2024-07-18T05:53:17Z) - InsertDiffusion: Identity Preserving Visualization of Objects through a Training-Free Diffusion Architecture [0.0]
InsertDiffusion is a training-free diffusion architecture that efficiently embeds objects into images.
Our approach utilizes off-the-shelf generative models and eliminates the need for fine-tuning.
By decomposing the generation task into independent steps, InsertDiffusion offers a scalable solution.
arXiv Detail & Related papers (2024-07-15T10:15:58Z) - FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior [50.0535198082903]
We offer a novel approach to image composition, which integrates multiple input images into a single, coherent image.
We showcase the potential of utilizing the powerful generative prior inherent in large-scale pre-trained diffusion models to accomplish generic image composition.
arXiv Detail & Related papers (2024-07-06T03:35:43Z) - CRoSS: Diffusion Model Makes Controllable, Robust and Secure Image
Steganography [15.705627450233504]
We propose a novel image steganography framework, named Controllable, Robust and Secure Image Steganography (CRoSS)
CRoSS has significant advantages in controllability, robustness, and security compared to cover-based image steganography methods.
arXiv Detail & Related papers (2023-05-26T13:52:57Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
This paper presents a versatile framework for conditional image generation.
It incorporates the inductive bias of CNNs and powerful sequence modeling of auto-regression.
Our method achieves superior diverse image generation performance as compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-21T22:19:17Z) - Rich Feature Distillation with Feature Affinity Module for Efficient
Image Dehazing [1.1470070927586016]
This work introduces a simple, lightweight, and efficient framework for single-image haze removal.
We exploit rich "dark-knowledge" information from a lightweight pre-trained super-resolution model via the notion of heterogeneous knowledge distillation.
Our experiments are carried out on the RESIDE-Standard dataset to demonstrate the robustness of our framework to the synthetic and real-world domains.
arXiv Detail & Related papers (2022-07-13T18:32:44Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.