Harnessing Frequency Spectrum Insights for Image Copyright Protection Against Diffusion Models
- URL: http://arxiv.org/abs/2503.11071v2
- Date: Mon, 17 Mar 2025 06:58:14 GMT
- Title: Harnessing Frequency Spectrum Insights for Image Copyright Protection Against Diffusion Models
- Authors: Zhenguang Liu, Chao Shuai, Shaojing Fan, Ziping Dong, Jinwu Hu, Zhongjie Ba, Kui Ren,
- Abstract summary: We present novel evidence that diffusion-generated images faithfully preserve the statistical properties of their training data.<n>We introduce emphCoprGuard, a robust frequency domain watermarking framework to safeguard against unauthorized image usage.
- Score: 26.821064889438777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have achieved remarkable success in novel view synthesis, but their reliance on large, diverse, and often untraceable Web datasets has raised pressing concerns about image copyright protection. Current methods fall short in reliably identifying unauthorized image use, as they struggle to generalize across varied generation tasks and fail when the training dataset includes images from multiple sources with few identifiable (watermarked or poisoned) samples. In this paper, we present novel evidence that diffusion-generated images faithfully preserve the statistical properties of their training data, particularly reflected in their spectral features. Leveraging this insight, we introduce \emph{CoprGuard}, a robust frequency domain watermarking framework to safeguard against unauthorized image usage in diffusion model training and fine-tuning. CoprGuard demonstrates remarkable effectiveness against a wide range of models, from naive diffusion models to sophisticated text-to-image models, and is robust even when watermarked images comprise a mere 1\% of the training dataset. This robust and versatile approach empowers content owners to protect their intellectual property in the era of AI-driven image generation.
Related papers
- Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage [14.985938758090763]
Text-to-image diffusion models, such as Stable Diffusion, have shown exceptional potential in generating high-quality images.<n>Recent studies highlight concerns over the use of unauthorized data in training these models, which may lead to intellectual property infringement or privacy violations.<n>We propose RATTAN, that leverages the diffusion process to conduct controlled image generation on the protected input.
arXiv Detail & Related papers (2024-11-22T22:28:19Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
We introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB)
TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models.
Experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
arXiv Detail & Related papers (2024-09-17T07:52:09Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
We introduce a novel approach, EnTruth, which Enhances Traceability of unauthorized dataset usage.
By strategically incorporating the template memorization, EnTruth can trigger the specific behavior in unauthorized models as the evidence of infringement.
Our method is the first to investigate the positive application of memorization and use it for copyright protection, which turns a curse into a blessing.
arXiv Detail & Related papers (2024-06-20T02:02:44Z) - Protect-Your-IP: Scalable Source-Tracing and Attribution against Personalized Generation [19.250673262185767]
We propose a unified approach for image copyright source-tracing and attribution.
We introduce an innovative watermarking-attribution method that blends proactive and passive strategies.
We have conducted experiments using various celebrity portrait series sourced online.
arXiv Detail & Related papers (2024-05-26T15:14:54Z) - Diffusion-Based Hierarchical Image Steganography [60.69791384893602]
Hierarchical Image Steganography is a novel method that enhances the security and capacity of embedding multiple images into a single container.
It exploits the robustness of the Diffusion Model alongside the reversibility of the Flow Model.
The innovative structure can autonomously generate a container image, thereby securely and efficiently concealing multiple images and text.
arXiv Detail & Related papers (2024-05-19T11:29:52Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
Diffusion-based image generation models can create artistic images that mimic the style of an artist or maliciously edit the original images for fake content.
Several attempts have been made to protect the original images from such unauthorized data usage by adding imperceptible perturbations.
In this work, we introduce a purification perturbation platform, named IMPRESS, to evaluate the effectiveness of imperceptible perturbations as a protective measure.
arXiv Detail & Related papers (2023-10-30T03:33:41Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
We propose a method for detecting unauthorized data usage by planting the injected content into the protected dataset.
Specifically, we modify the protected images by adding unique contents on these images using stealthy image warping functions.
By analyzing whether the model has memorized the injected content, we can detect models that had illegally utilized the unauthorized data.
arXiv Detail & Related papers (2023-07-06T16:27:39Z) - Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation [25.55296442023984]
We propose a method, Unlearnable Diffusion Perturbation, to safeguard images from unauthorized exploitation.
This achievement holds significant importance in real-world scenarios, as it contributes to the protection of privacy and copyright against AI-generated content.
arXiv Detail & Related papers (2023-06-02T20:19:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.