論文の概要: Exploring the Capabilities of Prompted Large Language Models in Educational and Assessment Applications
- arxiv url: http://arxiv.org/abs/2405.11579v1
- Date: Sun, 19 May 2024 15:13:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 15:12:36.322558
- Title: Exploring the Capabilities of Prompted Large Language Models in Educational and Assessment Applications
- Title(参考訳): 教育・評価分野におけるプロンプト付き大言語モデルの活用可能性を探る
- Authors: Subhankar Maity, Aniket Deroy, Sudeshna Sarkar,
- Abstract要約: 生成人工知能(AI)の時代、大規模言語モデル(LLM)の融合は、近代教育の分野で革新の先例のない機会を提供する。
学校レベルの教科書からオープンエンド質問を生成するためのプロンプトベースの手法の有効性について検討し,学部レベルの技術教科書からオープンエンド質問を生成する際の効率を評価し,言語に依存しない多段階質問(MCQ)生成のためのチェーン・オブ・インスパイアされたマルチステージ・プロンプト・アプローチの適用可能性について検討した。
- 参考スコア(独自算出の注目度): 0.4857223913212445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of generative artificial intelligence (AI), the fusion of large language models (LLMs) offers unprecedented opportunities for innovation in the field of modern education. We embark on an exploration of prompted LLMs within the context of educational and assessment applications to uncover their potential. Through a series of carefully crafted research questions, we investigate the effectiveness of prompt-based techniques in generating open-ended questions from school-level textbooks, assess their efficiency in generating open-ended questions from undergraduate-level technical textbooks, and explore the feasibility of employing a chain-of-thought inspired multi-stage prompting approach for language-agnostic multiple-choice question (MCQ) generation. Additionally, we evaluate the ability of prompted LLMs for language learning, exemplified through a case study in the low-resource Indian language Bengali, to explain Bengali grammatical errors. We also evaluate the potential of prompted LLMs to assess human resource (HR) spoken interview transcripts. By juxtaposing the capabilities of LLMs with those of human experts across various educational tasks and domains, our aim is to shed light on the potential and limitations of LLMs in reshaping educational practices.
- Abstract(参考訳): 生成人工知能(AI)の時代、大規模言語モデル(LLM)の融合は、近代教育の分野で革新の先例のない機会を提供する。
我々は、その可能性を明らかにするために、教育・アセスメント応用の文脈におけるLLMの活用を探究する。
本研究は,学校レベルの教科書からオープンエンド質問を生成する上でのプロンプトベースの手法の有効性を検討するとともに,学部レベルの技術教科書からオープンエンド質問を生成する際の効率を評価し,言語に依存しない多段階質問(MCQ)生成にチェーン・オブ・インスパイアされたマルチステージ・プロンプト・アプローチを採用する可能性を検討する。
さらに,低資源インド語ベンガル語を事例として,ベンガル語の文法的誤りを説明するために,LLMを言語学習に駆り立てる能力を評価する。
また,人的資源 (HR) 音声によるインタビューの書き起こしを評価するため, LLM を誘導する可能性についても検討した。
様々な教育課題や領域において,LLMの能力と人間専門家の能力を両立させることで,LLMの教育実践の変革における可能性と限界を明らかにすることを目的としている。
関連論文リスト
- The Future of Learning in the Age of Generative AI: Automated Question Generation and Assessment with Large Language Models [0.0]
大規模言語モデル(LLM)と生成AIは、自然言語処理(NLP)に革命をもたらした。
本章では,自動質問生成と回答評価におけるLLMの変容の可能性について考察する。
論文 参考訳(メタデータ) (2024-10-12T15:54:53Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [48.314619377988436]
LLM(Large Language Models)の急速な開発は、自然言語処理における顕著な多言語機能を示している。
LLMのブレークスルーにもかかわらず、多言語シナリオの研究は依然として不十分である。
本調査は,多言語問題に対する研究コミュニティの取り組みを支援することを目的としており,LLMに基づく多言語自然言語処理における中核概念,鍵技術,最新の発展の包括的理解を提供する。
論文 参考訳(メタデータ) (2024-05-17T17:47:39Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - History, Development, and Principles of Large Language Models-An Introductory Survey [15.875687167037206]
自然言語処理(NLP)の基盤となる言語モデル
数十年にわたる広範な研究を経て、言語モデリングは、初期統計言語モデル(SLM)から、大規模言語モデル(LLM)の現代的景観へと進歩してきた。
論文 参考訳(メタデータ) (2024-02-10T01:18:15Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Spoken Language Intelligence of Large Language Models for Language
Learning [3.5924382852350902]
教育分野における大規模言語モデル(LLM)の有効性を評価することに注力する。
上記のシナリオにおけるLLMの有効性を評価するために,新しい複数選択質問データセットを提案する。
また,ゼロショット法や少数ショット法など,様々なプロンプト技術の影響についても検討する。
異なる大きさのモデルは、音韻学、音韻学、第二言語習得の概念をよく理解しているが、実世界の問題に対する推論には限界がある。
論文 参考訳(メタデータ) (2023-08-28T12:47:41Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
我々は、知識強化事前学習言語モデル(KE-PLMs)の包括的なレビューを行う。
NLUでは、言語知識、テキスト知識、知識グラフ(KG)、ルール知識の4つのカテゴリに分類する。
NLGのKE-PLMは、KGベースと検索ベースに分類される。
論文 参考訳(メタデータ) (2022-11-11T04:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。