Global Convergence of Decentralized Retraction-Free Optimization on the Stiefel Manifold
- URL: http://arxiv.org/abs/2405.11590v1
- Date: Sun, 19 May 2024 15:50:57 GMT
- Title: Global Convergence of Decentralized Retraction-Free Optimization on the Stiefel Manifold
- Authors: Youbang Sun, Shixiang Chen, Alfredo Garcia, Shahin Shahrampour,
- Abstract summary: We show that DRFGT performs retraction on a gradient based on the corresponding DRFGT method.
Also show that DRFGT can be used to perform retraction on a network of agents.
- Score: 12.414718831844041
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many classical and modern machine learning algorithms require solving optimization tasks under orthogonal constraints. Solving these tasks often require calculating retraction-based gradient descent updates on the corresponding Riemannian manifold, which can be computationally expensive. Recently Ablin et al. proposed an infeasible retraction-free algorithm, which is significantly more efficient. In this paper, we study the decentralized non-convex optimization task over a network of agents on the Stiefel manifold with retraction-free updates. We propose \textbf{D}ecentralized \textbf{R}etraction-\textbf{F}ree \textbf{G}radient \textbf{T}racking (DRFGT) algorithm, and show that DRFGT exhibits ergodic $\mathcal{O}(1/K)$ convergence rate, the same rate of convergence as the centralized, retraction-based methods. We also provide numerical experiments demonstrating that DRFGT performs on par with the state-of-the-art retraction based methods with substantially reduced computational overhead.
Related papers
- Decentralized Sum-of-Nonconvex Optimization [42.04181488477227]
We consider the optimization problem of the sum-of-non function, i.e., a guarantee function that is the average non-consensus number.
We propose an accelerated decentralized first-order algorithm by techniques of gradient, tracking into the rate, and multi-consensus.
arXiv Detail & Related papers (2024-02-04T05:48:45Z) - Energy-Guided Continuous Entropic Barycenter Estimation for General Costs [95.33926437521046]
We propose a novel algorithm for approximating the continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions.
Our approach is built upon the dual reformulation of the EOT problem based on weak OT.
arXiv Detail & Related papers (2023-10-02T11:24:36Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Decentralized Riemannian Algorithm for Nonconvex Minimax Problems [82.50374560598493]
The minimax algorithms for neural networks have been developed to solve many problems.
In this paper, we propose two types of minimax algorithms.
For the setting, we propose DRSGDA and prove that our method achieves a gradient.
arXiv Detail & Related papers (2023-02-08T01:42:45Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
We propose a class of novel distributed Adam-type algorithms (emphi.e., SketchedAMSGrad) utilizing sketching.
Our new algorithm achieves a fast convergence rate of $O(frac1sqrtnT + frac1(k/d)2 T)$ with the communication cost of $O(k log(d))$ at each iteration.
arXiv Detail & Related papers (2022-10-14T01:42:05Z) - Decentralized Stochastic Proximal Gradient Descent with Variance
Reduction over Time-varying Networks [30.231314171218994]
In decentralized learning, a network of nodes cooperate to minimize an overall objective function that is usually the finite-sum of their local objectives.
We propose a novel algorithm, namely DPSVRG, to accelerate the decentralized training by leveraging the variance reduction technique.
arXiv Detail & Related papers (2021-12-20T08:23:36Z) - Fully-Connected Tensor Network Decomposition for Robust Tensor
Completion Problem [9.580645211308557]
We propose a $textbfFCTN$-based $textbfr$obust $textbfc$onvex optimization model (RC-FCTN) for the RTC problem.
For solving the constrained optimization model RC-FCTN, we develop an alternating direction method of multipliers (ADMM)-based algorithm.
A proximal alternating minimization (PAM)-based algorithm is developed to solve the proposed RNC-FCTN.
arXiv Detail & Related papers (2021-10-17T08:12:50Z) - On Accelerating Distributed Convex Optimizations [0.0]
This paper studies a distributed multi-agent convex optimization problem.
We show that the proposed algorithm converges linearly with an improved rate of convergence than the traditional and adaptive gradient-descent methods.
We demonstrate our algorithm's superior performance compared to prominent distributed algorithms for solving real logistic regression problems.
arXiv Detail & Related papers (2021-08-19T13:19:54Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
We propose a novel zeroth-order optimization algorithm for distributed reinforcement learning.
It allows each agent to estimate its local gradient by cost evaluation independently, without use of any consensus protocol.
arXiv Detail & Related papers (2021-07-26T18:11:07Z) - Distributed stochastic optimization with large delays [59.95552973784946]
One of the most widely used methods for solving large-scale optimization problems is distributed asynchronous gradient descent (DASGD)
We show that DASGD converges to a global optimal implementation model under same delay assumptions.
arXiv Detail & Related papers (2021-07-06T21:59:49Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.