論文の概要: Deep Ensemble Art Style Recognition
- arxiv url: http://arxiv.org/abs/2405.11675v1
- Date: Sun, 19 May 2024 21:26:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:43:16.104553
- Title: Deep Ensemble Art Style Recognition
- Title(参考訳): ディープ・アンサンブル・アート・スタイル認識
- Authors: Orfeas Menis-Mastromichalakis, Natasa Sofou, Giorgos Stamou,
- Abstract要約: 過去数十年間の膨大な量のアートワークのデジタル化は、抽象概念に関連する膨大な量のデータの分類、分析、管理の必要性を生み出した。
美術作品における様々な芸術的特徴の認識は、深層学習社会において注目されている。
本稿では,深層ネットワークを用いた美術スタイル認識の問題について考察する。
- 参考スコア(独自算出の注目度): 2.3369294168789203
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The massive digitization of artworks during the last decades created the need for categorization, analysis, and management of huge amounts of data related to abstract concepts, highlighting a challenging problem in the field of computer science. The rapid progress of artificial intelligence and neural networks has provided tools and technologies that seem worthy of the challenge. Recognition of various art features in artworks has gained attention in the deep learning society. In this paper, we are concerned with the problem of art style recognition using deep networks. We compare the performance of 8 different deep architectures (VGG16, VGG19, ResNet50, ResNet152, Inception-V3, DenseNet121, DenseNet201 and Inception-ResNet-V2), on two different art datasets, including 3 architectures that have never been used on this task before, leading to state-of-the-art performance. We study the effect of data preprocessing prior to applying a deep learning model. We introduce a stacking ensemble method combining the results of first-stage classifiers through a meta-classifier, with the innovation of a versatile approach based on multiple models that extract and recognize different characteristics of the input, creating a more consistent model compared to existing works and achieving state-of-the-art accuracy on the largest art dataset available (WikiArt - 68,55%). We also discuss the impact of the data and art styles themselves on the performance of our models forming a manifold perspective on the problem.
- Abstract(参考訳): 過去数十年間のアートワークの大規模なデジタル化は、抽象概念に関連する膨大な量のデータの分類、分析、管理の必要性を生み出し、コンピュータ科学の分野における課題を浮き彫りにした。
人工知能とニューラルネットワークの急速な進歩は、挑戦に値するツールや技術を提供してきた。
美術作品における様々な芸術的特徴の認識は、深層学習社会において注目されている。
本稿では,深層ネットワークを用いた美術スタイル認識の問題について考察する。
VGG16, VGG19, ResNet50, ResNet152, Inception-V3, DenseNet121, DenseNet201, Inception-ResNet-V2)の2つの異なるアートデータセットのパフォーマンスを比較した。
深層学習モデルを適用する前に,データ前処理の効果について検討する。
メタ分類器による第1段分類器の結果と、入力の特徴を抽出し認識する複数のモデルに基づく多元的アプローチの革新を組み合わせ、既存の作品と比較してより一貫性のあるモデルを作成し、利用可能な最大のアートデータセット(WikiArt-68,55%)で最先端の精度を達成するスタックングアンサンブル法を提案する。
また,データとアートスタイル自体が,問題に対する多様体的視点を形成するモデルの性能に与える影響についても論じる。
関連論文リスト
- Synergy of Machine and Deep Learning Models for Multi-Painter
Recognition [0.0]
我々は,62名のアーティストを含む絵画認識タスクのための大規模データセットを新たに導入し,良好な結果を得た。
RegNetは、機能をエクスポートする上で、SVMは、最大85%のパフォーマンスを持つ画家に基づいて、イメージの最高の分類を行う。
論文 参考訳(メタデータ) (2023-04-28T11:34:53Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
この研究の目的は、一対のイメージから視覚的に類似したパターンを効率的に識別することである。
画像中のオブジェクトセグメントを選択し、それを別の画像にコピーペーストすることで、合成トレーニングペアを生成する。
提案手法は,Brueghelデータセット上でのアートワークの詳細検索に対して,明確な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-10-29T16:51:16Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Detecting Visual Design Principles in Art and Architecture through Deep
Convolutional Neural Networks [0.0]
本研究の目的は、異なるドメインに対する設計原則を認識し、分類するニューラルネットワークモデルである。
提案したモデルは,その基盤となる共有パターンをキャプチャして,原設計の無数の知識から学習する。
論文 参考訳(メタデータ) (2021-08-09T14:00:17Z) - Tensor Methods in Computer Vision and Deep Learning [120.3881619902096]
テンソル(tensor)は、複数の次元の視覚データを自然に表現できるデータ構造である。
コンピュータビジョンにおけるディープラーニングパラダイムシフトの出現により、テンソルはさらに基本的なものになっている。
本稿では,表現学習と深層学習の文脈において,テンソルとテンソル法を深く,実践的に検討する。
論文 参考訳(メタデータ) (2021-07-07T18:42:45Z) - Knowledge distillation: A good teacher is patient and consistent [71.14922743774864]
最先端のパフォーマンスを実現する大規模モデルと、実用的な用途で手頃な価格のモデルとの間には、コンピュータビジョンの相違が増えている。
蒸留の有効性に大きな影響を及ぼす可能性のある,特定の暗黙的な設計選択を同定する。
ImageNetの最先端ResNet-50モデルが82.8%の精度で実現されている。
論文 参考訳(メタデータ) (2021-06-09T17:20:40Z) - Graph Neural Networks for Knowledge Enhanced Visual Representation of
Paintings [14.89186519385364]
ArtSAGENetは、グラフニューラルネットワーク(GNN)と畳み込みニューラルネットワーク(CNN)を統合する新しいアーキテクチャである。
提案したArtSAGENetは,アーティストとアートワーク間の重要な依存関係をキャプチャし,エンコードする。
本研究は美術品の分析とキュレーションにビジュアルコンテンツとセマンティクスを統合する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-05-17T23:05:36Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - Learning Portrait Style Representations [34.59633886057044]
高レベル特性を取り入れたニューラルネットワークアーキテクチャによって学習されたスタイル表現について検討する。
美術史家によって注釈付けされた三重奏曲をスタイル類似性の監督として取り入れることで,学習スタイルの特徴の変化を見いだす。
また,計算解析用に用意された肖像画の大規模データセットを初めて提示する。
論文 参考訳(メタデータ) (2020-12-08T01:36:45Z) - Art Style Classification with Self-Trained Ensemble of AutoEncoding
Transformations [5.835728107167379]
絵画の芸術的スタイルは豊かな記述物であり、アーティストが創造的なビジョンをどのように表現し表現するかについての視覚的知識と深い本質的な知識の両方を明らかにする。
本稿では,高度な自己指導型学習手法を用いて,クラス内およびクラス間変動の少ない複雑な芸術的スタイルを認識することの課題を解決する。
論文 参考訳(メタデータ) (2020-12-06T21:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。