論文の概要: Advancing 6-DoF Instrument Pose Estimation in Variable X-Ray Imaging Geometries
- arxiv url: http://arxiv.org/abs/2405.11677v1
- Date: Sun, 19 May 2024 21:35:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:43:16.101792
- Title: Advancing 6-DoF Instrument Pose Estimation in Variable X-Ray Imaging Geometries
- Title(参考訳): 可変X線イメージング測地における6-DoF計測値の精度向上
- Authors: Christiaan G. A. Viviers, Lena Filatova, Maurice Termeer, Peter H. N. de With, Fons van der Sommen,
- Abstract要約: X線システムにおける6-DoFポーズ推定タスクのための汎用的なデータ取得手法を提案する。
提案したYOLOv5-6Dのポーズモデルは、GPU上で42FPSでかなり高速ながら、公開ベンチマーク上での競合的な結果を達成する。
このモデルはADD-S測定値の0.1倍の92.41%を達成し,手術精度の向上と患者の予後向上に有望なアプローチを示す。
- 参考スコア(独自算出の注目度): 7.630289691590948
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate 6-DoF pose estimation of surgical instruments during minimally invasive surgeries can substantially improve treatment strategies and eventual surgical outcome. Existing deep learning methods have achieved accurate results, but they require custom approaches for each object and laborious setup and training environments often stretching to extensive simulations, whilst lacking real-time computation. We propose a general-purpose approach of data acquisition for 6-DoF pose estimation tasks in X-ray systems, a novel and general purpose YOLOv5-6D pose architecture for accurate and fast object pose estimation and a complete method for surgical screw pose estimation under acquisition geometry consideration from a monocular cone-beam X-ray image. The proposed YOLOv5-6D pose model achieves competitive results on public benchmarks whilst being considerably faster at 42 FPS on GPU. In addition, the method generalizes across varying X-ray acquisition geometry and semantic image complexity to enable accurate pose estimation over different domains. Finally, the proposed approach is tested for bone-screw pose estimation for computer-aided guidance during spine surgeries. The model achieves a 92.41% by the 0.1 ADD-S metric, demonstrating a promising approach for enhancing surgical precision and patient outcomes. The code for YOLOv5-6D is publicly available at https://github.com/cviviers/YOLOv5-6D-Pose
- Abstract(参考訳): 低侵襲手術における手術器具の正確な6-DoFポーズ推定は、治療戦略と最終的な手術結果を大幅に改善することができる。
既存のディープラーニング手法は正確な結果を得たが、各オブジェクトに対してカスタムアプローチが必要であり、リアルタイム計算を欠きながら、しばしば広範囲のシミュレーションにまで拡張される。
我々は,X線システムにおける6-DoFポーズ推定タスクの汎用的アプローチ,高精度かつ高速なオブジェクトポーズ推定のための新規かつ汎用的なYOLOv5-6Dポーズアーキテクチャ,および単眼円錐ビームX線画像からの取得幾何を考慮した外科的スクリューポーズ推定の完全な方法を提案する。
提案したYOLOv5-6Dのポーズモデルは、GPU上で42FPSでかなり高速ながら、公開ベンチマーク上での競合的な結果を達成する。
さらに, 異なる領域に対して正確なポーズ推定を可能にするために, 様々なX線取得形状と意味画像の複雑さを一般化する。
最後に,脊椎手術におけるコンピュータ支援指導のための骨スクリューポーズ推定法について検討した。
このモデルはADD-S測定値の0.1倍の92.41%を達成し,手術精度の向上と患者の予後向上に有望なアプローチを示す。
YOLOv5-6Dのコードはhttps://github.com/cviviers/YOLOv5-6D-Poseで公開されている。
関連論文リスト
- Realistic Data Generation for 6D Pose Estimation of Surgical Instruments [4.226502078427161]
手術器具の6次元ポーズ推定は,手術操作の自動実行を可能にするために重要である。
家庭や工業環境では、3Dコンピュータグラフィックスソフトウェアで生成された合成データが、アノテーションコストを最小限に抑える代替手段として示されている。
本稿では,大規模・多様なデータセットの自動生成を可能にする外科ロボティクスのシミュレーション環境の改善を提案する。
論文 参考訳(メタデータ) (2024-06-11T14:59:29Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
現在のアプローチは、多数の離散的なポーズ仮説を持つ連続的なポーズ表現を近似している。
本稿では,DVMNet(Deep Voxel Matching Network)を提案する。
提案手法は,最先端の手法に比べて計算コストの低い新しいオブジェクトに対して,より正確なポーズ推定を行う。
論文 参考訳(メタデータ) (2024-03-20T15:41:32Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - Redefining the Laparoscopic Spatial Sense: AI-based Intra- and
Postoperative Measurement from Stereoimages [3.2039076408339353]
立体視を用いた腹腔鏡計測のための人体AIを用いた新しい手法を開発した。
本研究は, 総合的質的要件分析に基づいて, 包括的測定法を提案する。
提案手法が1mm以下の誤差で精度の高い距離測定を実現する可能性について概説した。
論文 参考訳(メタデータ) (2023-11-16T10:19:04Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
静止カメラとヘッドマウントカメラを組み合わせたマルチカメラ・キャプチャー・セットアップを提案する。
第2に,手術用ウェットラボと実際の手術用劇場で撮影された元脊椎手術のマルチビューRGB-Dビデオデータセットを公表した。
第3に,手術器具の6DoFポーズ推定の課題に対して,最先端のシングルビューとマルチビューの3つの手法を評価した。
論文 参考訳(メタデータ) (2023-05-05T13:42:19Z) - Towards real-time 6D pose estimation of objects in single-view cone-beam
X-ray [6.971105483667455]
X線画像の深層学習モデルに基づく6次元オブジェクト推定は、広範囲にわたるCADモデルと訓練目的のデータを用いたカスタムジオメトリを使用することが多い。
最近のRGBベースの手法では、小さなデータセットを使って推定問題を解くことを選択しており、医療データが少ないX線領域ではより魅力的である。
我々は既存のRGBベースのモデル(SingleShot)を改良し、X線画像からマークされた立方体の6次元ポーズを推定する。
論文 参考訳(メタデータ) (2022-11-06T20:06:28Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
本稿では,新しい物体の6次元ポーズ推定をアルゴリズムで行えるようにするための新しいタスクを提案する。
実画像と合成画像の両方でデータセットを収集し、テストセットで最大48個の未確認オブジェクトを収集する。
エンド・ツー・エンドの3D対応ネットワークをトレーニングすることにより、未確認物体と部分ビューRGBD画像との対応点を高精度かつ効率的に見つけることができる。
論文 参考訳(メタデータ) (2022-06-23T16:29:53Z) - HMD-EgoPose: Head-Mounted Display-Based Egocentric Marker-Less Tool and
Hand Pose Estimation for Augmented Surgical Guidance [0.0]
HMD-EgoPoseは、手動とオブジェクトのポーズ推定のための単発学習に基づくアプローチである。
マーカーレスハンドと手術器具のポーズトラッキングのためのベンチマークデータセット上で,最先端の性能を示す。
論文 参考訳(メタデータ) (2022-02-24T04:07:34Z) - A Self-Supervised Deep Framework for Reference Bony Shape Estimation in
Orthognathic Surgical Planning [55.30223654196882]
仮想的な矯正手術計画では、3次元顔面骨形状モデルにおける顎変形の外科的修正をシミュレートする。
正常な解剖を表現した基準顔骨形状モデルは、計画精度を向上させるための客観的ガイダンスを提供することができる。
本稿では,顔面骨の形状モデルを自動的に推定する自己教師型ディープフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-11T05:24:40Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
トモグラフィー画像では、取得した信号に擬似逆フォワードモデルを適用することにより、解剖学的構造を再構成する。
患者の動きは、復元過程における幾何学的アライメントを損なうため、運動アーティファクトが生じる。
本研究では,スキャン対象から独立して剛性運動の構造を認識する外観学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-18T09:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。