論文の概要: Optimization of Worker Scheduling at Logistics Depots Using Genetic Algorithms and Simulated Annealing
- arxiv url: http://arxiv.org/abs/2405.11729v1
- Date: Mon, 20 May 2024 02:21:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:33:17.410603
- Title: Optimization of Worker Scheduling at Logistics Depots Using Genetic Algorithms and Simulated Annealing
- Title(参考訳): 遺伝的アルゴリズムとシミュレーションアニーリングを用いたロジスティックスデポにおける作業者スケジューリングの最適化
- Authors: Jinxin Xu, Haixin Wu, Yu Cheng, Liyang Wang, Xin Yang, Xintong Fu, Yuelong Su,
- Abstract要約: この研究は、0-1整数線形プログラミングモデルを確立することから始まる。
目的関数は、時間労働の要求を満たすことを保証する一方で、個人日を最小化することを目的としている。
最適解法は最低29857人日を明らかにする。
- 参考スコア(独自算出の注目度): 12.052513851250467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the optimization of scheduling for workers at a logistics depot using a combination of genetic algorithm and simulated annealing algorithm. The efficient scheduling of permanent and temporary workers is crucial for optimizing the efficiency of the logistics depot while minimizing labor usage. The study begins by establishing a 0-1 integer linear programming model, with decision variables determining the scheduling of permanent and temporary workers for each time slot on a given day. The objective function aims to minimize person-days, while constraints ensure fulfillment of hourly labor requirements, limit workers to one time slot per day, cap consecutive working days for permanent workers, and maintain non-negativity and integer constraints. The model is then solved using genetic algorithms and simulated annealing. Results indicate that, for this problem, genetic algorithms outperform simulated annealing in terms of solution quality. The optimal solution reveals a minimum of 29857 person-days.
- Abstract(参考訳): 本稿では,遺伝的アルゴリズムとシミュレートされたアニーリングアルゴリズムを組み合わせたロジスティクスデポにおける作業者のスケジューリングの最適化について述べる。
労働利用を最小化しつつ、ロジスティクス・デポの効率を最適化するためには、恒久的かつ一時的な労働者の効率的なスケジューリングが不可欠である。
この研究は0-1整数線形プログラミングモデルの構築から始まり、決定変数が与えられた日毎の時間帯ごとに、永続的および一時的なワーカーのスケジューリングを決定する。
目的は、時間的労働条件の履行を保証し、労働者を1日1時間に制限し、永続的な労働者のために連続的な労働日を上限とし、非負性や整数的制約を維持することにある。
モデルは、遺伝的アルゴリズムとシミュレートされたアニールを用いて解決される。
以上の結果から, 遺伝的アルゴリズムは, 溶液品質の面でシミュレーションアニールよりも優れていたことが示唆された。
最適解法は最低29857人日を明らかにする。
関連論文リスト
- Deep learning-driven scheduling algorithm for a single machine problem
minimizing the total tardiness [0.0]
単一パススケジューリングアルゴリズムで用いられる基準値の分解時間推定器として機能するディープニューラルネットワークを提案する。
機械学習によるアプローチは、トレーニングフェーズからかなり大きなインスタンスへの情報を効率的に一般化できることを示します。
論文 参考訳(メタデータ) (2024-02-19T15:34:09Z) - Genetic-based Constraint Programming for Resource Constrained Job
Scheduling [5.068093754585243]
資源制約されたジョブスケジューリングは、鉱業に起源を持つ計算の最適化問題である。
既成のソリューションはこの問題を合理的な時間枠で十分解決できない。
本稿では,制約プログラミングの効率的な探索手法を探索する遺伝的プログラミングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-01T09:57:38Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Coded Computation across Shared Heterogeneous Workers with Communication
Delay [42.50248255900814]
複数の行列乗算タスクを符号化し、並列計算のためにワーカーに割り当てるマルチワーカー分散コンピューティングのシナリオを考察する。
本稿では、各作業者が符号化されたタスクを処理可能な、専用および分数的な作業者割当ポリシーの下で、作業者割当、リソース割当負荷割当アルゴリズムを提案する。
提案アルゴリズムは,ベンチマークよりもタスク遅延の完了率を低減できることを示すとともに,専用および少数のワーカ割り当てポリシがアプリケーションのスコープが異なることを観察する。
論文 参考訳(メタデータ) (2021-09-23T09:40:54Z) - Learning to Schedule [3.5408022972081685]
本稿では,ジョブが生み出す累積保持コストを最小限に抑えるための学習・スケジューリングアルゴリズムを提案する。
各タイムスロットにおいて、サーバはシステムに残されているジョブのランダム保持コストを受信しながらジョブを処理できる。
論文 参考訳(メタデータ) (2021-05-28T08:04:06Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
多くの現実世界では、T関数の評価の予算を考えると、高価なブラックボックス関数 f の性質を推測したい。
本稿では,アルゴリズムの出力に対して相互情報を最大化するクエリを逐次選択する手法InfoBAXを提案する。
これらの問題に対してInfoBAXは、元のアルゴリズムで要求されるより500倍少ないクエリをfに使用する。
論文 参考訳(メタデータ) (2021-04-19T17:22:11Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
局所的な更新を一般化し、ライデン-k-カットから導かれる半定緩和を最大化する、新しい低カルチナリティアルゴリズムを提案する。
提案アルゴリズムはスケーラビリティが高く,最先端のアルゴリズムより優れ,実時間では性能が向上し,追加コストがほとんどない。
論文 参考訳(メタデータ) (2020-12-04T15:46:30Z) - Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack
Constraint [13.357957711519134]
制約されたサブモジュール問題には、パーソナライズされたレコメンデーション、チーム形成、バイラルマーケティングによる収益化など、さまざまな応用が含まれている。
我々は5.83のランダム化近似を達成し、O(n log n)$禁断時間、すなわち少なくとも$n$を他の最先端アルゴリズムよりも高速に実行する単純なグリーディアルゴリズムを提案する。
そこで我々は,非単調な目的に対する最初の定数近似である9-近似を求め,実データと合成データに改良された性能を示すアルゴリズムの実験評価を行った。
論文 参考訳(メタデータ) (2020-07-09T18:15:01Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。