Quality assurance of organs-at-risk delineation in radiotherapy
- URL: http://arxiv.org/abs/2405.11732v1
- Date: Mon, 20 May 2024 02:32:46 GMT
- Title: Quality assurance of organs-at-risk delineation in radiotherapy
- Authors: Yihao Zhao, Cuiyun Yuan, Ying Liang, Yang Li, Chunxia Li, Man Zhao, Jun Hu, Wei Liu, Chenbin Liu,
- Abstract summary: The delineation of tumor target and organs-at-risk is critical in the radiotherapy treatment planning.
The quality assurance of the automatic segmentation is still an unmet need in clinical practice.
Our proposed model, which introduces residual network and attention mechanism in the one-class classification framework, was able to detect the various types of OAR contour errors with high accuracy.
- Score: 7.698565355235687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The delineation of tumor target and organs-at-risk is critical in the radiotherapy treatment planning. Automatic segmentation can be used to reduce the physician workload and improve the consistency. However, the quality assurance of the automatic segmentation is still an unmet need in clinical practice. The patient data used in our study was a standardized dataset from AAPM Thoracic Auto-Segmentation Challenge. The OARs included were left and right lungs, heart, esophagus, and spinal cord. Two groups of OARs were generated, the benchmark dataset manually contoured by experienced physicians and the test dataset automatically created using a software AccuContour. A resnet-152 network was performed as feature extractor, and one-class support vector classifier was used to determine the high or low quality. We evaluate the model performance with balanced accuracy, F-score, sensitivity, specificity and the area under the receiving operator characteristic curve. We randomly generated contour errors to assess the generalization of our method, explored the detection limit, and evaluated the correlations between detection limit and various metrics such as volume, Dice similarity coefficient, Hausdorff distance, and mean surface distance. The proposed one-class classifier outperformed in metrics such as balanced accuracy, AUC, and others. The proposed method showed significant improvement over binary classifiers in handling various types of errors. Our proposed model, which introduces residual network and attention mechanism in the one-class classification framework, was able to detect the various types of OAR contour errors with high accuracy. The proposed method can significantly reduce the burden of physician review for contour delineation.
Related papers
- Uncertainty-based quality assurance of carotid artery wall segmentation
in black-blood MRI [3.377374929672754]
We develop a fully automatic algorithm for carotid artery wall segmentation in black-blood MRI.
This method identifies nested artery walls in 3D patches centered on the carotid artery.
We investigate to what extent the uncertainty in the model predictions for the contour location can serve as a surrogate for error detection.
arXiv Detail & Related papers (2023-08-18T13:16:00Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
This paper proposes a novel approach to train a generative Diffusion Autoencoder model as an unsupervised feature extractor.
We model fracture grading as a continuous regression, which is more reflective of the smooth progression of fractures.
Importantly, the generative nature of our method allows us to visualize different grades of a given vertebra, providing interpretability and insight into the features that contribute to automated grading.
arXiv Detail & Related papers (2023-03-21T17:16:01Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Self-Supervised Equivariant Regularization Reconciles Multiple Instance
Learning: Joint Referable Diabetic Retinopathy Classification and Lesion
Segmentation [3.1671604920729224]
Lesion appearance is a crucial clue for medical providers to distinguish referable diabetic retinopathy (rDR) from non-referable DR.
Most existing large-scale DR datasets contain only image-level labels rather than pixel-based annotations.
This paper leverages self-supervised equivariant learning and attention-based multi-instance learning to tackle this problem.
We conduct extensive validation experiments on the Eyepacs dataset, achieving an area under the receiver operating characteristic curve (AU ROC) of 0.958, outperforming current state-of-the-art algorithms.
arXiv Detail & Related papers (2022-10-12T06:26:05Z) - Application of the nnU-Net for automatic segmentation of lung lesion on
CT images, and implication on radiomic models [1.8231394717039833]
A deep-learning automatic segmentation method was applied on computed tomography images of non-small-cell lung cancer patients.
The use of manual vs automatic segmentation in the performance of survival radiomic models was assessed, as well.
arXiv Detail & Related papers (2022-09-24T15:04:23Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Multiple Organ Failure Prediction with Classifier-Guided Generative
Adversarial Imputation Networks [4.040013871160853]
Multiple organ failure (MOF) is a severe syndrome with a high mortality rate among Intensive Care Unit (ICU) patients.
Applying machine learning models to electronic health records is a challenge due to the pervasiveness of missing values.
arXiv Detail & Related papers (2021-06-22T15:49:01Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - An Extensive Study on Cross-Dataset Bias and Evaluation Metrics
Interpretation for Machine Learning applied to Gastrointestinal Tract
Abnormality Classification [2.985964157078619]
Automatic analysis of diseases in the GI tract is a hot topic in computer science and medical-related journals.
A clear understanding of evaluation metrics and machine learning models with cross datasets is crucial to bring research in the field to a new quality level.
We present comprehensive evaluations of five distinct machine learning models that can classify 16 different GI tract conditions.
arXiv Detail & Related papers (2020-05-08T08:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.