State-of-the-Art Periorbital Distance Prediction and Disease Classification Using Periorbital Features
- URL: http://arxiv.org/abs/2409.18769v5
- Date: Wed, 14 May 2025 16:01:10 GMT
- Title: State-of-the-Art Periorbital Distance Prediction and Disease Classification Using Periorbital Features
- Authors: George R. Nahass, Sasha Hubschman, Jeffrey C. Peterson, Ghasem Yazdanpanah, Nicholas Tomaras, Madison Cheung, Alex Palacios, Kevin Heinze, Chad A. Purnell, Pete Setabutr, Ann Q. Tran, Darvin Yi,
- Abstract summary: Periorbital distances are critical markers for diagnosing and monitoring a range of oculoplastic and craniofacial conditions.<n>We developed a segmentation pipeline trained on a domain-specific dataset of healthy eyes.<n>Our segmentation model achieved state-of-the-art accuracy across all datasets, with error rates within intergrader variability.
- Score: 0.19124895078287507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Periorbital distances are critical markers for diagnosing and monitoring a range of oculoplastic and craniofacial conditions. Manual measurement, however, is subjective and prone to intergrader variability. Automated methods have been developed but remain limited by standardized imaging requirements, small datasets, and a narrow focus on individual measurements. We developed a segmentation pipeline trained on a domain-specific dataset of healthy eyes and compared its performance against the Segment Anything Model (SAM) and the prior benchmark, PeriorbitAI. Segmentation accuracy was evaluated across multiple disease classes and imaging conditions. We further investigated the use of predicted periorbital distances as features for disease classification under in-distribution (ID) and out-of-distribution (OOD) settings, comparing shallow classifiers, CNNs, and fusion models. Our segmentation model achieved state-of-the-art accuracy across all datasets, with error rates within intergrader variability and superior performance relative to SAM and PeriorbitAI. In classification tasks, models trained on periorbital distances matched CNN performance on ID data (77--78\% accuracy) and substantially outperformed CNNs under OOD conditions (63--68\% accuracy vs. 14\%). Fusion models achieved the highest ID accuracy (80\%) but were sensitive to degraded CNN features under OOD shifts. Segmentation-derived periorbital distances provide robust, explainable features for disease classification and generalize better under domain shift than CNN image classifiers. These results establish a new benchmark for periorbital distance prediction and highlight the potential of anatomy-based AI pipelines for real-world deployment in oculoplastic and craniofacial care.
Related papers
- HOG-CNN: Integrating Histogram of Oriented Gradients with Convolutional Neural Networks for Retinal Image Classification [1.5939351525664014]
We propose an automated and interpretable clinical decision support framework based on a hybrid feature extraction model called HOG-CNN.<n>Our key contribution lies in the integration of handcrafted Histogram of Oriented Gradients (HOG) features with deep convolutional neural network (CNN) representations.<n>Our model achieves 98.5% accuracy and 99.2 AUC for binary DR classification, and 94.2 AUC for five-class DR classification.
arXiv Detail & Related papers (2025-07-29T22:54:28Z) - Benchmarking Pretrained Attention-based Models for Real-Time Recognition in Robot-Assisted Esophagectomy [2.847280871973632]
Esophageal cancer is among the most common types of cancer worldwide.
In recent years, robot-assisted minimally invasive esophagectomy has emerged as a promising alternative.
Computer-aided anatomy recognition holds promise for improving surgical navigation.
arXiv Detail & Related papers (2024-12-04T15:32:37Z) - Open-Source Periorbital Segmentation Dataset for Ophthalmic Applications [30.61547468576024]
Periorbital segmentation and distance prediction using deep learning allows for the objective quantification of disease state.
There are currently no reports of segmentation datasets for the purposes of training deep learning models with sub mm accuracy on the regions around the eyes.
Here, we validate this dataset through intra and intergrader reliability tests and show the utility of the data in training periorbital segmentation networks.
arXiv Detail & Related papers (2024-09-30T15:35:27Z) - Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation [1.2873975765521795]
This work applied the Mahalanobis distance (MD) post hoc to the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver.
Images the models failed on were detected with high performance and minimal computational load.
arXiv Detail & Related papers (2024-08-05T18:24:48Z) - Quality assurance of organs-at-risk delineation in radiotherapy [7.698565355235687]
The delineation of tumor target and organs-at-risk is critical in the radiotherapy treatment planning.
The quality assurance of the automatic segmentation is still an unmet need in clinical practice.
Our proposed model, which introduces residual network and attention mechanism in the one-class classification framework, was able to detect the various types of OAR contour errors with high accuracy.
arXiv Detail & Related papers (2024-05-20T02:32:46Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - DoseDiff: Distance-aware Diffusion Model for Dose Prediction in Radiotherapy [7.934475806787889]
We propose a distance-aware diffusion model (DoseDiff) for precise prediction of dose distribution.
The results demonstrate that our DoseDiff method outperforms state-of-the-art dose prediction methods in terms of both quantitative performance and visual quality.
arXiv Detail & Related papers (2023-06-28T15:58:53Z) - SSL-CPCD: Self-supervised learning with composite pretext-class
discrimination for improved generalisability in endoscopic image analysis [3.1542695050861544]
Deep learning-based supervised methods are widely popular in medical image analysis.
They require a large amount of training data and face issues in generalisability to unseen datasets.
We propose to explore patch-level instance-group discrimination and penalisation of inter-class variation using additive angular margin.
arXiv Detail & Related papers (2023-05-31T21:28:08Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
We propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups.
Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines.
arXiv Detail & Related papers (2023-04-19T09:52:50Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Hierarchical Optimal Transport for Comparing Histopathology Datasets [12.722028880166278]
We propose a principled notion of distance between histopathology datasets based on a hierarchical generalization of optimal transport distances.
Our method does not require any training, is agnostic to model type, and preserves much of the hierarchical structure in histopathology datasets imposed by tiling.
arXiv Detail & Related papers (2022-04-18T13:52:06Z) - Facial Anatomical Landmark Detection using Regularized Transfer Learning
with Application to Fetal Alcohol Syndrome Recognition [24.27777060287004]
Fetal alcohol syndrome (FAS) caused by prenatal alcohol exposure can result in a series of cranio-facial anomalies.
Anatomical landmark detection is important to detect the presence of FAS associated facial anomalies.
Current deep learning-based heatmap regression methods designed for facial landmark detection in natural images assume availability of large datasets.
We develop a new regularized transfer learning approach that exploits the knowledge of a network learned on large facial recognition datasets.
arXiv Detail & Related papers (2021-09-12T11:05:06Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - Improved inter-scanner MS lesion segmentation by adversarial training on
longitudinal data [0.0]
The evaluation of white matter lesion progression is an important biomarker in the follow-up of MS patients.
Current automated lesion segmentation algorithms are susceptible to variability in image characteristics related to MRI scanner or protocol differences.
We propose a model that improves the consistency of MS lesion segmentations in inter-scanner studies.
arXiv Detail & Related papers (2020-02-03T16:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.