Learning Future Representation with Synthetic Observations for Sample-efficient Reinforcement Learning
- URL: http://arxiv.org/abs/2405.11740v1
- Date: Mon, 20 May 2024 02:43:04 GMT
- Title: Learning Future Representation with Synthetic Observations for Sample-efficient Reinforcement Learning
- Authors: Xin Liu, Yaran Chen, Dongbin Zhao,
- Abstract summary: In visual Reinforcement Learning (RL), upstream representation learning largely determines the effect of downstream policy learning.
We try to improve auxiliary representation learning for RL by enriching auxiliary training data.
We propose a training-free method to synthesize observations that may contain future information.
The remaining synthetic observations and real observations then serve as the auxiliary data to achieve a clustering-based temporal association task.
- Score: 12.277005054008017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In visual Reinforcement Learning (RL), upstream representation learning largely determines the effect of downstream policy learning. Employing auxiliary tasks allows the agent to enhance visual representation in a targeted manner, thereby improving the sample efficiency and performance of downstream RL. Prior advanced auxiliary tasks all focus on how to extract as much information as possible from limited experience (including observations, actions, and rewards) through their different auxiliary objectives, whereas in this article, we first start from another perspective: auxiliary training data. We try to improve auxiliary representation learning for RL by enriching auxiliary training data, proposing \textbf{L}earning \textbf{F}uture representation with \textbf{S}ynthetic observations \textbf{(LFS)}, a novel self-supervised RL approach. Specifically, we propose a training-free method to synthesize observations that may contain future information, as well as a data selection approach to eliminate unqualified synthetic noise. The remaining synthetic observations and real observations then serve as the auxiliary data to achieve a clustering-based temporal association task for representation learning. LFS allows the agent to access and learn observations that have not yet appeared in advance, so as to quickly understand and exploit them when they occur later. In addition, LFS does not rely on rewards or actions, which means it has a wider scope of application (e.g., learning from video) than recent advanced auxiliary tasks. Extensive experiments demonstrate that our LFS exhibits state-of-the-art RL sample efficiency on challenging continuous control and enables advanced visual pre-training based on action-free video demonstrations.
Related papers
- Improving Reinforcement Learning Efficiency with Auxiliary Tasks in
Non-Visual Environments: A Comparison [0.0]
This study compares common auxiliary tasks based on, to the best of our knowledge, the only decoupled representation learning method for low-dimensional non-visual observations.
Our findings show that representation learning with auxiliary tasks only provides performance gains in sufficiently complex environments.
arXiv Detail & Related papers (2023-10-06T13:22:26Z) - Sequential Action-Induced Invariant Representation for Reinforcement
Learning [1.2046159151610263]
How to accurately learn task-relevant state representations from high-dimensional observations with visual distractions is a challenging problem in visual reinforcement learning.
We propose a Sequential Action-induced invariant Representation (SAR) method, in which the encoder is optimized by an auxiliary learner to only preserve the components that follow the control signals of sequential actions.
arXiv Detail & Related papers (2023-09-22T05:31:55Z) - TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning [73.53576440536682]
We introduce TACO: Temporal Action-driven Contrastive Learning, a powerful temporal contrastive learning approach.
TACO simultaneously learns a state and an action representation by optimizing the mutual information between representations of current states.
For online RL, TACO achieves 40% performance boost after one million environment interaction steps.
arXiv Detail & Related papers (2023-06-22T22:21:53Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Light-weight probing of unsupervised representations for Reinforcement Learning [20.638410483549706]
We study whether linear probing can be a proxy evaluation task for the quality of unsupervised RL representation.
We show that the probing tasks are strongly rank correlated with the downstream RL performance on the Atari100k Benchmark.
This provides a more efficient method for exploring the space of pretraining algorithms and identifying promising pretraining recipes.
arXiv Detail & Related papers (2022-08-25T21:08:01Z) - Reinforcement Learning with Prototypical Representations [114.35801511501639]
Proto-RL is a self-supervised framework that ties representation learning with exploration through prototypical representations.
These prototypes simultaneously serve as a summarization of the exploratory experience of an agent as well as a basis for representing observations.
This enables state-of-the-art downstream policy learning on a set of difficult continuous control tasks.
arXiv Detail & Related papers (2021-02-22T18:56:34Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
This paper presents an effective approach that adds spatial information to the encoding stage to alleviate the learning inconsistency between the contrastive objective and strong data augmentation operations.
We show that our approach achieves higher efficiency in visual representations and thus delivers a key message to inspire the future research of self-supervised visual representation learning.
arXiv Detail & Related papers (2020-11-19T16:26:25Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
We investigate the benefit of adding semantic-class positives to instance-based Info Noise Contrastive Estimation training.
We propose a novel self-supervised co-training scheme to improve the popular infoNCE loss.
We evaluate the quality of the learnt representation on two different downstream tasks: action recognition and video retrieval.
arXiv Detail & Related papers (2020-10-19T17:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.