Light-weight probing of unsupervised representations for Reinforcement Learning
- URL: http://arxiv.org/abs/2208.12345v2
- Date: Fri, 31 May 2024 21:36:57 GMT
- Title: Light-weight probing of unsupervised representations for Reinforcement Learning
- Authors: Wancong Zhang, Anthony GX-Chen, Vlad Sobal, Yann LeCun, Nicolas Carion,
- Abstract summary: We study whether linear probing can be a proxy evaluation task for the quality of unsupervised RL representation.
We show that the probing tasks are strongly rank correlated with the downstream RL performance on the Atari100k Benchmark.
This provides a more efficient method for exploring the space of pretraining algorithms and identifying promising pretraining recipes.
- Score: 20.638410483549706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised visual representation learning offers the opportunity to leverage large corpora of unlabeled trajectories to form useful visual representations, which can benefit the training of reinforcement learning (RL) algorithms. However, evaluating the fitness of such representations requires training RL algorithms which is computationally intensive and has high variance outcomes. Inspired by the vision community, we study whether linear probing can be a proxy evaluation task for the quality of unsupervised RL representation. Specifically, we probe for the observed reward in a given state and the action of an expert in a given state, both of which are generally applicable to many RL domains. Through rigorous experimentation, we show that the probing tasks are strongly rank correlated with the downstream RL performance on the Atari100k Benchmark, while having lower variance and up to 600x lower computational cost. This provides a more efficient method for exploring the space of pretraining algorithms and identifying promising pretraining recipes without the need to run RL evaluations for every setting. Leveraging this framework, we further improve existing self-supervised learning (SSL) recipes for RL, highlighting the importance of the forward model, the size of the visual backbone, and the precise formulation of the unsupervised objective.
Related papers
- RLInspect: An Interactive Visual Approach to Assess Reinforcement Learning Algorithm [0.0]
Reinforcement Learning (RL) is a rapidly growing area of machine learning.
Assessing RL models can be challenging, which makes it difficult to interpret their behaviour.
We have developed RLInspect, an interactive visual analytic tool.
It takes into account different components of the RL model - state, action, agent architecture and reward, and provides a more comprehensive view of the RL training.
arXiv Detail & Related papers (2024-11-13T07:24:14Z) - DEAR: Disentangled Environment and Agent Representations for Reinforcement Learning without Reconstruction [4.813546138483559]
Reinforcement Learning (RL) algorithms can learn robotic control tasks from visual observations, but they often require a large amount of data.
In this paper, we explore how the agent's knowledge of its shape can improve the sample efficiency of visual RL methods.
We propose a novel method, Disentangled Environment and Agent Representations, that uses the segmentation mask of the agent as supervision.
arXiv Detail & Related papers (2024-06-30T09:15:21Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
Contrastive self-supervised learning has been successfully integrated into the practice of (deep) reinforcement learning (RL)
We study how RL can be empowered by contrastive learning in a class of Markov decision processes (MDPs) and Markov games (MGs) with low-rank transitions.
Under the online setting, we propose novel upper confidence bound (UCB)-type algorithms that incorporate such a contrastive loss with online RL algorithms for MDPs or MGs.
arXiv Detail & Related papers (2022-07-29T17:29:08Z) - Contrastive Learning as Goal-Conditioned Reinforcement Learning [147.28638631734486]
In reinforcement learning (RL), it is easier to solve a task if given a good representation.
While deep RL should automatically acquire such good representations, prior work often finds that learning representations in an end-to-end fashion is unstable.
We show (contrastive) representation learning methods can be cast as RL algorithms in their own right.
arXiv Detail & Related papers (2022-06-15T14:34:15Z) - Mask-based Latent Reconstruction for Reinforcement Learning [58.43247393611453]
Mask-based Latent Reconstruction (MLR) is proposed to predict the complete state representations in the latent space from the observations with spatially and temporally masked pixels.
Extensive experiments show that our MLR significantly improves the sample efficiency in deep reinforcement learning.
arXiv Detail & Related papers (2022-01-28T13:07:11Z) - Exploratory State Representation Learning [63.942632088208505]
We propose a new approach called XSRL (eXploratory State Representation Learning) to solve the problems of exploration and SRL in parallel.
On one hand, it jointly learns compact state representations and a state transition estimator which is used to remove unexploitable information from the representations.
On the other hand, it continuously trains an inverse model, and adds to the prediction error of this model a $k$-step learning progress bonus to form the objective of a discovery policy.
arXiv Detail & Related papers (2021-09-28T10:11:07Z) - Cross-Trajectory Representation Learning for Zero-Shot Generalization in
RL [21.550201956884532]
generalize policies learned on a few tasks over a high-dimensional observation space to similar tasks not seen during training.
Many promising approaches to this challenge consider RL as a process of training two functions simultaneously.
We propose Cross-Trajectory Representation Learning (CTRL), a method that runs within an RL agent and conditions its encoder to recognize behavioral similarity in observations.
arXiv Detail & Related papers (2021-06-04T00:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.